

CACY

Efficacy of Prehospital Application of Tourniquets and Hemostatic Dressings To Control Traumatic External Hemorrhage

ALE





GEM



RESEA



RESILIENCE

# Disclaimer

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's name or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

**Suggested citation:** Snyder D, Tsou A, Schoelles K. Efficacy of Prehospital Application of Tourniquets and Hemostatic Dressings to Control Traumatic External Hemorrhage. DOT HS 811 999b. Washington, DC: National Highway Traffic Safety Administration. May 2014. Available at: <u>www.ems.gov</u>.

The majority of all road trauma deaths occur either at the scene of injury or in the prehospital setting. The World Health Organization has identified uncontrolled bleeding to be the leading cause of preventable traumatic death. Emergency Medical Services systems play a key role in helping to reduce motor vehicle-related fatalities by providing medical care at the crash scene and by quickly transporting injured patients to the most appropriate level of trauma care. This systematic review was used by the American College of Surgeons to develop an evidence-based guideline on external hemorrhage control in the prehospital setting and will help the National Highway Traffic Safety Administration (NHTSA) in its mission to save lives due to injuries from road traffic crashes. This document and the associated evidence-based guideline will help NHTSA meet its strategic goals to improve survivability from motor vehicle crashes and improve emergency care for persons injured in vehicle crashes.

# **Technical Expert Panel**

In designing the study questions and methodology at the outset of this report, ECRI Institute consulted several technical and content experts. Broad expertise and perspectives were sought. Divergent and conflicted opinions are common and perceived as healthy scientific discourse that results in a thoughtful, relevant systematic review. Therefore, in the end, study questions, design, methodologic approaches, and/or conclusions do not necessarily represent the views of individual technical and content experts.

Technical Experts must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential conflicts of interest identified.

The list of Technical Experts who participated in developing this report follows:

Eileen Bulger, M.D. Professor of Surgery, University of Washington Chief of Trauma, Harborview Medical Center Seattle, Washington

Frank Butler, MD, CAPT, MC, USN (ret) Chairman, Department of Defense Committee on Tactical Combat Causalty Care Director, Prehospital Trauma Care Division, Department of Defense Joint Trauma System Naval Hospital Pensacola Pensacola, Florida

Drew Dawson, Director Office of Emergency Medical Services National Highway Traffic Safety Administration U.S. Department of Transportation Washington, DC

Mary Fallat, M.D. Professor and Chief, Pediatric Surgery University of Louisville School of Medicine Louisville, KY

Detective Scott M. Harding, BS, NREMT-P Prehospital Trauma Life Support, Region 1 Coordinator National Association of Emergency Medical Technicians Columbus, OH Jay Johannigman, M.D. Associate Professor of Surgery Chief, Division of Trauma/Critical Care University of Cincinnati Medical Center Cincinnati, OH

Christopher Kahn, M.D. M.P.H. Fellowship Director, EMS/Disaster Medicine Fellowship University of California San Diego Medical Center San Diego, CA

Gregg Margolis, Ph.D., NREMT-P Director, Division of Health Systems and Health Care Policy Office of the Assistant Secretary for Preparedness Response U.S. Department of Health and Human Services Washington, DC

Jeffrey P. Salomone, M.D. NREMT-P Medical Director District Medical Group Maricopa Medical Center Phoenix, Arizona Peter P. Taillac, MD Associate Professor, Surgery Division of Emergency Medicine University of Utah School of Medicine Utah State EMS Medical Director, Bureau of EMS and Preparedness Salt Lake City, UT Lynn J. White, M.S., CCRP Director of Resuscitation and Accountable Care American Medical Response Research Consultant, The Center for Medical Transport Research Columbus, Ohio

# **Peer Reviewers**

Prior to publication of the final evidence report, ECRI Institute sought input from Peer Reviewers selected by the National Highway Traffic Safety Administration. However, the conclusions and synthesis of the scientific literature presented in this report does not necessarily represent the views of individual reviewers.

Peer reviewers must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential non-financial conflicts may be retained. The list of peer reviewers follows.

Frank Butler, MD, CAPT, MC, USN (ret) Chairman, DoD Committee on Tactical Combat Causalty Care Director, Prehospital Trauma Care Division, Joint Trauma System

Mary Fallat, M.D. Professor and Chief, Pediatric Surgery University of Louisville School of Medicine Committee on Trauma, American College of Surgeons Louisville, KY

Cathy Gotschall, Sc.D. Office of Emergency Medical Services National Highway Traffic Safety Administration U.S. Department of Transportation, Washington, DC J. Stephen Higgins, Ph.D. Office of Behavioral Safety Research National Highway Traffic Safety Administration U.S. Department of Transportation, Washington, DC

Eddy Lang M.D., C.M., CCFP (EM), CSPQ Interim Faculty Department Head Department of Emergency Medicine University of Calgary Calgary, Alberta, Canada

Peter Taillac, MD Utah Bureau of EMS and Preparedness University of Utah School of Medicine National Association of State EMS Officials Salt Lake City, UT

# Acknowledgments

The authors gratefully acknowledge Cathy Gotschall, Sc.D., of the Office of Emergency Medical Services in the National Highway Traffic Safety Administration, who provided oversight of the project (Prepared under Subcontract No. S2013.104SC to Millennium Services 2000+ Incorporated, DTNH22-11-C-00223). We also acknowledge the contributions of Eileen Erinoff, M.S.L.I.S., Director of the Information Center and Kristy McShea, M.S.L.S., Medical Librarian, both of ECRI Institute, for designing and conducting the literature searches.

| Abbreviations and Acronyms                                             | viii                                  |
|------------------------------------------------------------------------|---------------------------------------|
| 1. Introduction                                                        | 1                                     |
| Background                                                             | 1                                     |
| Condition                                                              | 1                                     |
| Treatment Strategies                                                   | 2                                     |
| Tourniquets                                                            | 2                                     |
| Hemostatic Agents and Dressings                                        |                                       |
| Wound Closure Device                                                   | 4                                     |
| Scope and Key Questions                                                | 11                                    |
| Scope of the Review                                                    | 11                                    |
| Key Questions                                                          | 11                                    |
| Use of Tourniquets                                                     |                                       |
| Use of Hemostatic Dressings                                            |                                       |
| Analytic Framework                                                     |                                       |
| 2. Methods                                                             | 14                                    |
| Literature Search Strategy                                             | 14                                    |
| Search Strategy                                                        | 14                                    |
| Inclusion Criteria                                                     |                                       |
| Population                                                             |                                       |
| Intervention                                                           | 15                                    |
| Study Design                                                           | 15                                    |
| Outcomes                                                               | 15                                    |
| Publication Type                                                       | 15                                    |
| Study Selection and Data Extraction                                    |                                       |
| Risk-of-Bias Assessment of Individual Studies                          | 16                                    |
| Data Synthesis                                                         |                                       |
| Strength of the Evidence Base                                          |                                       |
| Applicability                                                          |                                       |
| Peer Review                                                            |                                       |
| 3. Results                                                             |                                       |
| Results of Literature Searches                                         |                                       |
| Key Question 1: Tourniquets Compared With External Pressure            |                                       |
| Description of Included Studies                                        |                                       |
| Kev Points                                                             | 25                                    |
| Detailed Synthesis                                                     | 25                                    |
| Strength of Evidence                                                   |                                       |
| Applicability                                                          |                                       |
| Key Question 2. Junctional Tourniquets Compared With External Pressure | ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰ |
| Description of Included Studies                                        |                                       |
| Description of meruded studies                                         |                                       |

# Contents

| Key Question 3: Tourniquets Compared With Other Tourniquets                                 |     |
|---------------------------------------------------------------------------------------------|-----|
| Description of Included Studies                                                             |     |
| Key Question 4: Junctional Tourniquets Compared With Other Junctional Tourniquets           |     |
| Description of Included Studies                                                             |     |
| Key Question 5: Tourniquets and Duration of Use                                             |     |
| Strength of Evidence                                                                        |     |
| Key Question 6: Hemostatic Dressings Compared With External Pressure                        |     |
| Description of Included Studies                                                             |     |
| Key Points                                                                                  | 41  |
| Strength of Evidence                                                                        |     |
| Applicability                                                                               |     |
| Key Question 7: Hemostatic Dressings Compared With Other Hemostatic Dressings               | 44  |
| Description of Included Studies                                                             |     |
| Ongoing Clinical Trials                                                                     | 44  |
| Indirect Evidence: Animal Model Studies                                                     | 45  |
| Key Points                                                                                  |     |
| Selection of Animal Studies                                                                 | 47  |
| Description of studies using 30-45 seconds of free bleeding time                            | 47  |
| Strength of Evidence                                                                        |     |
| Description of studies using shorter or longer free-bleeding times                          | 50  |
| Studies using 5 seconds or less free bleeding time                                          | 50  |
| Studies using 1 or 2 minutes of free bleeding time                                          | 50  |
| Studies using 3 or more minutes of free bleeding                                            | 50  |
| Indirect Evidence: Volunteer and Simulation Studies                                         | 51  |
| Key Points                                                                                  | 51  |
| Results of Volunteer and Simulation Studies                                                 | 51  |
| 4. Discussion                                                                               |     |
| Key Findings and Strength of Evidence                                                       | 53  |
| Findings in Relationship to What is Already Known                                           | 54  |
| Applicability                                                                               | 54  |
| Limitations of the Evidence Base                                                            | 55  |
| Research Gaps                                                                               | 55  |
| Conclusions                                                                                 | 56  |
| References                                                                                  | 57  |
| Appendix A. Methods of Identifying the Literature                                           | A-1 |
| Appendix B. Excluded Articles                                                               | B-1 |
| Appendix C. Evidence Tables for Indirect Evidence: Animal, Volunteer and Simulation Studies | C-1 |

| Table 1.  | Types of tourniquets                                                                                                                                                | 4  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.  | Types of hemostatic dressings                                                                                                                                       | 6  |
| Table 3.  | Mechanism of action of hemostatic dressings                                                                                                                         | 9  |
| Table 4.  | List of included studies of prehospital tourniquet use                                                                                                              | 21 |
| Table 5.  | Outcomes reported in studies of prehospital tourniquets                                                                                                             | 22 |
| Table 6.  | Data collection process in studies of prehospital tourniquet use                                                                                                    | 23 |
| Table 7.  | Studies of prehospital tourniquets reporting data on mortality                                                                                                      | 26 |
| Table 8.  | Studies of prehospital tourniquets reporting data on amputations                                                                                                    | 29 |
| Table 9.  | Studies of prehospital tourniquets reporting adverse events                                                                                                         | 30 |
| Table 10. | Key Question 1: Strength of evidence grades for survival rate and amputation rate with prehospital tourniquet use                                                   | 33 |
| Table 11. | Key Question 5: Strength of evidence grades for adverse events with prehospital tourniquet use                                                                      | 37 |
| Table 12. | List of included studies of prehospital hemostatic dressing use                                                                                                     | 38 |
| Table 13. | Outcomes reported in studies of prehospital hemostatic dressings                                                                                                    | 38 |
| Table 14. | Data collection process in studies of prehospital hemostatic dressing use                                                                                           | 39 |
| Table 15. | Study of prehospital hemostatic dressing use reporting survival                                                                                                     | 41 |
| Table 16. | Studies of prehospital hemostatic dressing use reporting adverse events                                                                                             | 41 |
| Table 17. | Key Question 6: Strength of evidence grades for survival and amputations with prehospital hemostatic dressing use                                                   | 43 |
| Table 18. | U.S. Army Institute of Surgical Research Recommendations for Surgical Procedures,<br>Wound Treatment, and Resuscitation for Severe Extremity Hemorrhage Swine Model | 46 |
| Table 19. | Strength of evidence – Animal studies using recommended free bleeding time (30-45 seconds) in comparison to standard gauze                                          | 49 |
|           | Figures                                                                                                                                                             |    |
| Figure 1. | Analytic framework                                                                                                                                                  | 13 |
| Figure 2. | Disposition of documents identified by searches                                                                                                                     | 19 |
| Figure 3. | Survival rates (short-term) in casualties treated with a prehospital tourniquet, all studies included                                                               | 28 |

#### Tables

Survival rates (short-term) in casualties treated with a prehospital tourniquet, only

Amputation rates in surviving casualties treated with a prehospital tourniquet, military

Figure 4.

Figure 5.

# **Abbreviations and Acronyms**

- ACS: advanced clotting sponge (QuikClot)
- CAT: Combat Application Tourniquet
- CRoC: Combat Ready Clamp
- EMS: emergency medical services
- EMT: Emergency and Military Tourniquet
- EPC: Evidence-based Practice Center
- ISS: Injury Severity Score
- JTTR: Joint Theater Trauma Registry
- QCG: QuikClot Combat Gauze
- RCT: randomized controlled trial
- SOFTT: Special Operations Forces Tactical Tourniquet
- TCCC: Tactical Combat Casualty Care

# 1. Introduction

# Background

### Condition

In the United States, data collected by the Centers for Disease Control and Prevention indicate that traumatic injuries in 2008 accounted for 181.226 deaths.<sup>1</sup> According to the National Highway Traffic Safety Administration, motor vehicle crashes in 2010 were responsible for 32,885 deaths and 2,239,000 injures.<sup>2</sup> In contrast in the same year interpersonal violence and falls were responsible for 20,000 and 31,600 deaths, respectively.<sup>3</sup> Death from road injuries was the fifth leading cause of death, exceeded only by death from ischemic heart disease, lung cancer, stroke, and chronic obstructive pulmonary disease. Some of these injury-related deaths are due to traumatic external hemorrhage and exsanguination. An analysis by Kauvar et al.<sup>4</sup> of the National Trauma Data Bank for the years 2002–2005 found a 2.8% death rate among patients with an "isolated lower extremity trauma with an arterial component." Among the same set of patients, 6.5% suffered amputations. The authors suggested that deaths from traumatic external hemorrhage and exsanguination may be preventable with better prehospital control of hemorrhage. A smaller study of patients who died from isolated extremity injuries at two hospitals in the Houston area was reported by Dorlac et al. The study suggested if prehospital hemorrhage control been employed, some of these patients might have been saved.<sup>5</sup> These patients were treated primarily by gauze dressings before reaching a hospital.

One source of evidence on prehospital control of hemorrhage is the military. Over the past 10 years the U.S. military's Tactical Casualty Combat Care (TCCC) program has worked to steadily improve prehospital trauma care.<sup>6-9</sup> (The reader should note that "casualty" refers to an injured person and not necessarily to a fatality.) The goal of TCCC is avoid preventable deaths through a set of trauma-management guidelines designed for the battlefield before the solider reaches a medical treatment facility. The Committee on TCCC regularly evaluates the prehospital trauma literature, gets input from combat medical personnel, and looks at research performed at military research facilities to update the guidelines when needed. Before 2001, battlefield trauma care did not involve the regular use of tourniquets or hemostatic dressings for hemorrhage control.<sup>8,9</sup> External hemorrhage was usually managed with prolonged direct pressure. Through the TCCC's efforts, by January 2005, all combatants entering a U.S. Central Command area were directed to have a Combat Application Tourniquet (CAT) and a HemCon dressing. Evidence leading to these recommendations was gathered via military reports during early parts of the wars in Afghanistan and Iraq.<sup>10-13</sup>

Use of tourniquets in civilian emergency medical services (EMS) is not widespread.<sup>14,15</sup> Instead, most EMS providers rely on direct pressure, pressure dressings, pressure points and elevation to treat severe extremity hemorrhage, using tourniquets only as a last resort. The Guidelines for Field Triage of Injured Patients does not include a recommendation for tourniquet use because "evidence is limited regarding the use of tourniquets in civilian populations; use of tourniquets among EMS systems varies; inclusion of tourniquet use as a criterion could lead to overuse of tourniquets instead of basic hemorrhage control methods, and thus potentially result in overtriage."<sup>1</sup> Efforts are being made to implement aspects of TCCC into civilian trauma care, especially the use of tourniquets.<sup>9,16-18</sup> The recent mass-casualty event at the Boston Marathon brought tourniquets into the public spotlight as they were used by volunteer medical staff to stop severe hemorrhage.<sup>19</sup> Interestingly, Boston EMS had incorporated tourniquet use and training into its protocols for several years and also adapted several of the TCCC concepts as well.<sup>19</sup>

#### **Treatment Strategies**

For the purposes of this report, external hemorrhage is defined as blood loss originating from a ruptured blood vessel and appearing on a body surface. External hemorrhage includes extremity hemorrhage (blood loss from a ruptured blood vessel in the arms or legs) and junctional hemorrhage (blood loss from a ruptured blood vessel in the groin proximal to the inguinal ligament, the buttocks, the gluteal and pelvis areas, the perineum, the axilla and shoulder girdle, and the base of the neck).<sup>20</sup>

The following section provides background on the conditions and treatments being examined in this evidence report. Details on the proper techniques for tourniquet use can be found in other resources such as the TCCC Curriculum and Guidelines.<sup>21,22</sup>

#### Tourniquets

Tourniquets have a long history of use potentially dating as far back as the 1500s.<sup>23-25</sup> Historical records indicate tourniquets were first used to stop blood flow prior to performing the medical amputations often necessitated by battlefield injury. Tourniquets were widely used to treat extremity bleeding in World War I, but medical officers were often dissatisfied with their use in the field; the long delays before soldiers would reach a field hospital for treatment often resulted in prolonged stoppage of blood flow and subsequent loss of the limb. Tourniquets continued to be used in subsequent major conflicts including WW II, the Korean War and the Vietnam War with apparently mixed results. However, several factors may have contributed to negative outcomes associated with tourniquet use. Tourniquets were sometimes placed when not indicated, or improperly placed; also, there continued to be significant delays in transporting wounded soldiers off the battlefield. Fears of tissue damage and limb loss appear to have discouraged civilian use. Instead, the technique of applying direct pressure followed by a pressure dressing, and pressure-point bleeding control was favored. Traumatic amputation was considered an exception to the no-tourniquet approach.

As noted, experience from the wars in Afghanistan and Iraq prompted the U.S. military to aggressively use tourniquets.<sup>24</sup> Most fatalities occur before the injured soldier reaches a physician, with many of the deaths due to extremity hemorrhage. Medics are now trained to apply a tourniquet first rather than direct pressure, leaving the medic free to attend to other duties. Tourniquet pressure is then maintained during transport to a medical facility.<sup>8</sup> According to Kragh:<sup>26</sup>

The current indication for emergency tourniquet use is any compressible limb wound that the applier assesses as having potentially lethal hemorrhage. In this environment tourniquet use may be the initial and primary method to control severe hemorrhage. This is in contrast to a historical stepwise approach that used application of direct pressure and pressure points to control hemorrhage before tourniquet application.

Unlike earlier wars, injured soldiers are quickly removed from the battlefield and receive prompt medical attention, reducing the likelihood that prolonged tourniquet use will lead to tissue damage or limb loss. Tourniquets work properly when compression of limb tissue stops arterial blood flow and no distal pulse is present.<sup>26</sup> Well-designed tourniquets should be easy to use, durable, and mechanically effective to ensure stoppage of arterial blood flow without excessive pressure.<sup>27</sup> The U.S. military, through the TCCC program, recommends three tourniquets: the CAT, the Special Operations Forces Tactical Tourniquet (SOFTT), and the Emergency and Military Tourniquet (EMT).<sup>7</sup> Testing by the military found that these three tourniquets were 100% effective in stopping arterial blood flow in the limbs of volunteers who applied their own tourniquets.<sup>28</sup> The CAT and SOFTT use a strap and a windlass for tightening and the EMT is a pneumatic tourniquet with an air bladder and an inflation bulb to produce compression. These three tourniquets are intended for use on thighs or upper arms.

A separate category of tourniquets, called junctional tourniquets, is comprised of devices designed to stop bleeding in the areas between the trunk and the limbs where a regular tourniquet cannot be applied.<sup>20,29</sup> The Combat Ready Clamp (CRoC) was specifically designed for difficult inguinal bleeding during combat and works by compressing the femoral artery in the inguinal or groin area. The device is collapsible and lightweight and has a rounded plastic disk to apply direct pressure over the femoral artery. A safety strap is attached to the device to hold it around the torso.

Table 1 presents information on manufacturers, design, and regulatory information for commercially available tourniquets.

Tourniquet use is associated with characteristic complications. For instance, insufficient compression will stop only venous flow (essentially creating a venous tourniquet) trapping blood in the limb with potentially life threatening consequences.<sup>14,26</sup> The trapped blood causes limb edema and loss of blood to the general circulation, which can hasten the onset of shock. Bleeding may actually increase with development of venous hypertension. Venous tourniquets have been associated with increased mortality.<sup>10</sup> Other complications include ischemia, compression, and reperfusion injury.<sup>26,30</sup> Muscle cells, in particular, may be more susceptible to ischemia and reperfusion effects after prolonged tourniquet use. Nerve compression may result in neuropathy and weakness; however, evidence suggests this nerve damage is typically minor and reversible.<sup>26</sup> The potential association between tourniquets and limb loss is examined under Key Question 1.

#### **Hemostatic Agents and Dressings**

Topical hemostatic agents may be useful for injuries (such as junctional wounds) in which tourniquet use is not feasible.<sup>16,31,32</sup> These agents have physical properties that allow the agent to adhere to damaged tissue and seal ruptured blood vessels or enhance natural blood clotting mechanisms to accelerate clot formation and produce a strengthened clot.

Clot-formation enhancement can be achieved through two mechanisms: concentration of clotting elements in the wound through rapid absorption of water from blood, or chemical reactions that stimulate the intrinsic coagulation pathway. The ideal agent should stop bleeding in 2 minutes or less, cause no toxicity to surrounding tissue, cause no pain or thermal injury, be ready to use with little training, be easily applied under extreme conditions, fit complex wounds, be easily removed from the wound, have a long shelf life, and be cost-effective.<sup>31,32</sup>

Table 2 presents information on manufacturers and regulatory information for commercially available hemostatic dressings.

Table 3 describes the mechanism of action of each hemostatic dressing.

The U.S. military has tested several hemostatic dressings, primarily using a swine model of femoral artery injury.<sup>33</sup> These tests suggested that QuikClot Combat Gauze and WoundStat were more consistent in stopping hemorrhage than HemCon or QuikClot. The TCCC program recommended "Combat Gauze as the first-line treatment for life-threatening hemorrhage that is not amenable to tourniquet placement."<sup>7</sup> WoundStat was recommended as a backup agent. QuikClot Combat Gauze was preferred over WoundStat because combat medical personnel strongly preferred a gauze-type hemostatic agent over powdered or granule hemostatic agents and because of potential thromboembolic complications associated with using WoundStat. WoundStat was subsequently dropped by the U.S. military because of potential damage to blood vessels reported in animal studies.<sup>34</sup>

#### Wound Closure Device

Innovative Trauma Care (iTraumaCare Inc., Edmonton AB, Canada) developed and marketed a temporary wound closure device called the iTClamp Hemorrhage Control System (Innovative Trauma Care). This device is applied to wound edges and then pressed closed. The skin edges are held by suture needles and a pressure bar holds the edges together to seal the wound and allow formation of a stable clot.<sup>35</sup> The clamp is self-locking to prevent unintentional opening. The device received clearance for marketing from the U.S. Food and Drug Administration under the 510(k) process in May 2013 (K123551). The predicate device was the Combat Ready Clamp. Indications for use are: "The iTClamp is a trauma clamp device for the temporary control of severe bleeding in the extremities, axilla and inguinal areas."

| Product                | Company* (Web site)                                    | U.S. Food and Drug Administration (FDA)<br>Regulations                      |
|------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|
| Combat Application     | Composite Resources, Inc.                              | Class 1 – 510(k) exempt                                                     |
| Tourniquet (CAT)       | (Combat Application Tourniquet<br>Composite Resources) | Product code: <u>GAX</u> (Tourniquet, nonpneumatic)                         |
|                        |                                                        | Establishment Registration & Device Listing for<br>Composite Resources Inc. |
| Combat Ready Clamp     | Combat Medical Systems                                 | Product code: <u>DXC</u> (clamp, vascular)                                  |
| (CRoC)                 | (CRoC Combat Ready Clamp)                              |                                                                             |
|                        |                                                        | 510(k) summaries: <u>K130482</u> (issued 2013 Apr 29),                      |
|                        |                                                        | K102025 (Issued 2010, Aug 11)                                               |
|                        |                                                        | Indications for use:                                                        |
|                        |                                                        | The Combat Ready Clamp is indicated for use in                              |
|                        |                                                        | the battlefield to control difficult bleeds in the inguinal area.           |
| Emergency and Military | Delfi Medical Innovations                              | Class 1 – 510(k) exempt                                                     |
| Tourniquet (EMT)       | (Delfi medical innovations, inc.)                      | Product code: <u>KCY</u> (Tourniquet, pneumatic)                            |
|                        |                                                        |                                                                             |
|                        |                                                        | Establishment Registration & Device Listing for                             |
|                        |                                                        | Delfi Medical Innovations                                                   |

#### Table 1.Types of tourniquets

| Product                                      | Company* (Web site)                                                   | U.S. Food and Drug Administration (FDA)<br>Regulations                                                        |
|----------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| SAM Medical Systems<br>Junctional tourniquet | SAM Medical Systems<br>(SAM Junctional Tourniquet «                   | Product Code: <u>DXC</u> (clamp vascular)                                                                     |
|                                              | SAM)                                                                  | 510(k) summary: <u>K123694</u> (issued 2013 Mar 7)                                                            |
|                                              |                                                                       | Indications for use:                                                                                          |
|                                              |                                                                       | The SAM Junctional Tourniquet is indicated for<br>battlefield and trauma situations:                          |
|                                              |                                                                       | <ul> <li>To control difficult bleeds in the inguinal area</li> <li>To immobilize a pelvic fracture</li> </ul> |
| Special Operation Forces                     | Tactical Medical Solutions, Inc.                                      | Class 1 – 510(k) exempt                                                                                       |
| Tactical Tourniquet<br>(SOFTT)               | (Product Details -Tac Med<br>Solutions Store)                         | Product code: <u>GAX</u> (Tourniquet, nonpneumatic)                                                           |
|                                              |                                                                       | Establishment Registration & Device Listing for<br>Tactical Medical Solutions, Inc.                           |
| SWAT-T                                       | TEMS Solutions, LLC                                                   | Class 1 – 510(k) exempt                                                                                       |
|                                              | (WELCOME - SWAT-<br>Tourniquet)                                       | Product code: <u>GAX</u> (Tourniquet, nonpneumatic)                                                           |
|                                              |                                                                       | Establishment Registration & Device Listing for                                                               |
|                                              | Product is also distributed on<br>Combat Medical Systems Web<br>site: | TEMS Solutions                                                                                                |
|                                              | (SWAT-T Tactical Tourniquet)                                          |                                                                                                               |
| TK-4 (Tourni-kwik)                           | H&H Medical Corp.                                                     | Class 1 – 510(k) exempt                                                                                       |
|                                              | (H&H Medical Corporation)                                             | Product code: <u>GAX</u> (Tourniquet, nonpneumatic)                                                           |
|                                              |                                                                       | Establishment Registration & Device Listing for                                                               |
|                                              |                                                                       | H&H Medical Corporation                                                                                       |

\*Company names were obtained through FDA documents or from the product Web site.

Table 2. Types of hemostatic dressings

| Product   | Company* (Web site)                                                                  | U.S. Food and Drug Administration Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BloodStop | Lifescience Plus, Inc.<br>( <u>BloodSTOP for surface wounds</u><br>LifeScience PLUS) | Product code: <u>FRO</u> (Dressing, wound, drug)<br>510(k) summaries:<br><u>K072681.pdf</u> (issued 2007 Nov 2)<br><u>K071578.pdf</u> (issued 2007 Sep 27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                      | Indications for use:<br>Non-absorbable hemostatic gauze for emergency and<br>therapeutic use in the control of bleeding from the skin and<br>other surface wounds where temporary control of bleeding<br>is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | ( <u>USA Home « Celox</u> )                                                          | 510(k) summaries:<br>K113560.pdf (issued 2012 Aug 1)<br>K110386.pdf (issued 2011 May 10)<br>K102965.pdf (issued 2010 Dec 8)<br>K093593.pdf (issued 2010 Jan 20)<br>K093519.pdf (issued 2010 Jan 14)<br>K090780.pdf (issued 2009 Nov 20)<br>K091795.pdf (issued 2009 Nov 20)<br>K080097.pdf (issued 2008 Jul 9)<br>K072328.pdf (issued 2007 Dec 21)<br>K061079.pdf (issued 2006 Jun 2)<br>Latest indications for use:<br>Under the supervision of a health care professional CELOX<br>Gauze PRO / CELOX PRO Hemostatic Gauze / OMNI-<br>STAT Gauze / OMNI-STAT Hemostatic Gauze for minor<br>external bleeding from wounds and procedures (Rx) is<br>indicated for use as a temporary topical dressing for<br>bleeding control associated with minor wounds, including |
|           |                                                                                      | and/or surgical procedures.<br>Under the supervision of a health care professional CELOX<br>Gauze PRO / CELOX PRO Hemostatic Gauze'/ OMNI-<br>STAT Gauze / OMNI-STAT Hemostatic Gauze for moderate<br>to severe external bleeding wounds (Rx) is indicated for<br>temporary external treatment for controlling moderate to<br>severe bleeding.                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Product               | Company* (Web site)                                       | U.S. Food and Drug Administration Regulations                                                                                                                                                                           |
|-----------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HemCon,<br>Chitoflex, | HemCon Medical Technologies,<br>Inc. (acquired by TriStar | Product code: FRO (Dressing, wound, drug)                                                                                                                                                                               |
| Guardacare            | Wellness Solutions in May                                 | 510(k) summaries                                                                                                                                                                                                        |
|                       | 2013)                                                     | HemCon dressings                                                                                                                                                                                                        |
|                       | (HemCon > Home)                                           | K072486.pdf (issued 2008 Aug 6)                                                                                                                                                                                         |
|                       |                                                           | K080818.pdf (issued 2008 May 15)                                                                                                                                                                                        |
|                       |                                                           | K043050.pdf (issued 2005 Jun 13)                                                                                                                                                                                        |
|                       |                                                           | K030946.pdf (issued 2003 Jun 19)                                                                                                                                                                                        |
|                       |                                                           | K023298.pdf (issued 2002 Nov 4)                                                                                                                                                                                         |
|                       |                                                           | Latest indications for use:                                                                                                                                                                                             |
|                       |                                                           | HemCon Bandage is a hemostatic dressing for the external<br>temporary control of severely bleeding wounds intended for<br>emergency use. Additionally, the HemCon Bandage also<br>controls bleeding after hemodialysis. |
|                       |                                                           | ChitoGauze/ChitoFlex                                                                                                                                                                                                    |
|                       |                                                           | K111163.pdf (issued 2011 May 17) [ChitoGauze]                                                                                                                                                                           |
|                       |                                                           | K102546.pdf (issued 2010 Nov 17) [ChitoGauze]                                                                                                                                                                           |
|                       |                                                           | K092357.pdf (issued 2009 Aug 25) [ChitoGauze]                                                                                                                                                                           |
|                       |                                                           | K090026.pdf (issued 2009 Mar 31) [ChitoGauze]                                                                                                                                                                           |
|                       |                                                           | K071519.pdf (issued 2007 Aug 6) [ChitoFlex]                                                                                                                                                                             |
|                       |                                                           | Latest indications for use:                                                                                                                                                                                             |
|                       |                                                           | The ChitoGauze"" FUISIONW Wound Packing Kit is a<br>hemostatic dressing for the external, temporary control of<br>severely bleeding wounds.                                                                             |
|                       |                                                           | GuardaCaro                                                                                                                                                                                                              |
|                       |                                                           | K103641.pdf (issued 2011 Jun 16)                                                                                                                                                                                        |
|                       |                                                           | Latest indications for use:                                                                                                                                                                                             |
|                       |                                                           | HemCon GuardaCareT'XR is a hemostatic dressing<br>intended for the temporary control of severely bleeding<br>wounds such as surgical wounds and traumatic injuries.                                                     |
| Quick Relief (QR),    | BioLife, LLC                                              | Product code: FRO (Dressing, wound, drug)                                                                                                                                                                               |
| PRO QR,<br>StatSeal,  | ( <u>BioLife</u> )                                        | Establishment Registration and Device Listings                                                                                                                                                                          |
| WoundSeal,            |                                                           | BioSeal Advanced; BioSeal CVC; Pro QR Powder;                                                                                                                                                                           |
| BioSeal               |                                                           | StatSeal; WoundSeal; WoundSeal MD; WoundSeal Rapid<br>Response) and TraumaSeal                                                                                                                                          |
|                       |                                                           | 510(k) summaries                                                                                                                                                                                                        |
|                       |                                                           | K080210.pdf (issued 2009 Feb 10) IPRO OR (Quick Relief)]                                                                                                                                                                |
|                       |                                                           | <u>K070520.pdf</u> (issued 2007 Nov 6)                                                                                                                                                                                  |
|                       |                                                           | Latest indications for use:                                                                                                                                                                                             |
|                       |                                                           | PRO QR Powder for moderate to severe external bleeding                                                                                                                                                                  |
|                       |                                                           | wounds is intended for emergency use of temporary<br>external treatment for controlling moderate to severe<br>bleeding.                                                                                                 |

 Table 2. Types of hemostatic dressings (continued)

| Product                          | Company* (Web site)                                      | U.S. Food and Drug Administration Regulations                                                                                                                     |
|----------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QuikClot Combat                  | Z-Medica Corporation                                     | Product code: FRO (Dressing, wound, drug)                                                                                                                         |
| ACS                              | (ZMedica - QuikClot - Stop<br>Bleeding East   Hemostatic |                                                                                                                                                                   |
|                                  | agent)                                                   | 5 IU(K) summanes                                                                                                                                                  |
|                                  |                                                          | K123387 ndf (issued 2013 Apr 12)                                                                                                                                  |
|                                  |                                                          | K120782 pdf (issued 2013 Mar 20)                                                                                                                                  |
|                                  |                                                          | K090620 pdf (issued 2009 Apr 8)                                                                                                                                   |
|                                  |                                                          | <u>K072474.pdf</u> (issued 2007 Oct 16)                                                                                                                           |
|                                  |                                                          | Latest indications for use:                                                                                                                                       |
|                                  |                                                          | QuikClot Combat Gauze Hemostatic Dressing is intended                                                                                                             |
|                                  |                                                          | for use as a topical dressing for local management of                                                                                                             |
|                                  |                                                          | It may also be used for temporary treatment of severely                                                                                                           |
|                                  |                                                          | bleeding wounds, such as surgical wounds (operative, postoperative, dermatological, etc.) and traumatic injuries.                                                 |
|                                  |                                                          | QuikClot granule bandages                                                                                                                                         |
|                                  |                                                          | K070010.pdf (issued 2007 Jan 25) [QuikClot Sport]                                                                                                                 |
|                                  |                                                          | K061767.pdf (issued 2006 Jul 19) [QuikClot ACS]                                                                                                                   |
|                                  |                                                          | K051955.pdf (issued 2005 Aug 10) [QuikClot ACS]                                                                                                                   |
|                                  |                                                          | K050769.pdf (issued 2005 Apr 14)                                                                                                                                  |
|                                  |                                                          | K013390.pdf (issued 2002 May 23) Different manufacturer<br>– On Site Gas Systems, Inc.                                                                            |
|                                  |                                                          | Latest Indications for use for QuikClot ACS:                                                                                                                      |
|                                  |                                                          | This device is intended for temporary external use to control                                                                                                     |
|                                  |                                                          | traumatic bleeding.                                                                                                                                               |
| Rapid deployment                 | Marine Polymer Technologies                              | Product Code: <u>KMF</u> (Bandage, liquid)                                                                                                                        |
| hemostat (RDH)<br>Modified Rapid | ( <u>mrdh   Why mrdh</u> )                               | (When used only as a skin protectant, the device is exempt from the premarket notification procedures)                                                            |
| Deployment                       |                                                          |                                                                                                                                                                   |
| Hemostat (MRDH)                  |                                                          | 510(k) summaries                                                                                                                                                  |
|                                  |                                                          | K082703.pdf (issued 2008 Oct 14)                                                                                                                                  |
|                                  |                                                          | K002550.pdf (issued 2000 Dec 20)                                                                                                                                  |
|                                  |                                                          | Latest indications for use:                                                                                                                                       |
|                                  |                                                          | MRDH Bandage is a trauma dressing intended for the                                                                                                                |
|                                  |                                                          | temporary control of severely bleeding wounds such as<br>surgical wounds (operative, postoperative, donor sites,<br>dermatological, etc.) and traumatic injuries. |

 Table 2. Types of hemostatic dressings (continued)

| Product                                       | Company* (Web site)                                                                                                                                                                                                                                                                                                                                           | U.S. Food and Drug Administration Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product<br>TraumaDex,<br>Bleed-X,<br>Hemaderm | Company* (Web site)<br>Medafor, Inc.<br>(Medafor Inc Products and<br>Technology, Medafor Inc.<br>Developer of Hemostatic<br>Technology)<br>Note: According to news items<br>on Medafor's Web site (Medafor<br>News 2002-02-12) TraumaDex<br>is distributed by Emergency<br>Medical Products (EMP) to<br>emergency medical services<br>and military personnel. | U.S. Food and Drug Administration Regulations         Product code: FRO (Dressing, wound, drug)         510(k) summaries         Hemaderm         K033666.pdf (issued 2003 Dec 17)         K021678.pdf (issued 2002 Jul 12)         Latest indications for use:         HemaDerm is intended for use under the care of a health care professional as a topical dressing for the temporary treatment of severely bleeding wounds, such as surgical wounds (postoperative, donor sites, dermatological,) minor cuts, and lacerations and for the temporary treatment of mild bleeding from topical ear, nose, and throat surgical wounds and nosebleeds.         510(k) Class 1 Product code: KMF (Bandage, liquid)         TraumaDEX, Bleed-X         K013225.pdf (issued 2001 Dec 26)         Latest indications for use: |
|                                               |                                                                                                                                                                                                                                                                                                                                                               | TraumaDex is intended as a topical dressing for the local<br>management of bleeding wounds such as cuts, lacerations,<br>and abrasions. Under the care of a health care professional,<br>TraumaDex may be used for the temporary treatment of<br>severely bleeding wounds, such as surgical wounds<br>(postoperative, donor sites, dermatological), cuts,<br>lacerations, and traumatic injuries                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UltraClot<br>(InstaClot)<br>BallistiClot      | Emergency Medical Devices,<br>LLC<br>(Emergency Medical Devices)                                                                                                                                                                                                                                                                                              | Product code: FRO (Dressing, wound, drug)         510(k) summary         K082601.pdf (decision date 2008 Oct 9) - Note: according to manufacturer Web site, UltraClot OTC, UltraClot Onestep, UltraClot Gauze, and BallistiClot are covered by this 510(k). Clearance is pending for UltraClot Plug.         Latest indications for use:         UltraClot is intended as a hemostatic dressing for emergency external use and temporary wound treatment to achieve hemostasis of moderate to severe bleeding.                                                                                                                                                                                                                                                                                                            |

 Table 2. Types of hemostatic dressings (continued)

\*Company names were obtained through FDA documents or from the product Web site

#### Table 3. Mechanism of action of hemostatic dressings

| Product   | Company*                                                                        | Mechanism of Action as Described on the Company Web site                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BloodStop | Lifescience Plus, Inc.<br>BloodSTOP for surface<br>wounds   LifeScience<br>PLUS | "BloodSTOP is a natural, biocompatible, non-irritating, animal-free<br>hemostatic agent which resembles traditional gauze. Using a proprietary<br>formulation, cotton cellulose is etherized and oxidized to make a highly<br>absorbent, water-soluble, hemostatic matrix." "When applied to a wound,<br>BloodSTOP quickly absorbs blood and other body fluids, transforms into<br>a gel to seal the wound with a protective transparent layer, actively aids<br>in blood coagulation, and creates an environment for wound healing." |

| Product                                                                               | Company*                                                                                                                          | Mechanism of Action as Described on the Company Web site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Celox                                                                                 | Medtrade Products,<br>Ltd.<br>( <u>USA Home « Celox</u> )                                                                         | <ul> <li>"Celox Gauze is a high density gauze, impregnated with the proven<br/>Celox granules [chitosan], individually sterile packed in a ruggedized<br/>pouch with tear notches for fast opening."</li> <li>Chitosan absorbs fluid, swells, and forms a gel;</li> <li>Celox electrostatically attracts red blood cells and forms a gel-like<br/>plug.</li> <li>Does not rely on the body's own clotting mechanism.</li> <li>No heat generated.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HemCon,<br>Chitoflex,<br>Chito<br>Gauze,<br>Guardacare                                | HemCon Medical<br>Technologies, Inc.<br>(acquired by TriStar<br>Wellness Solutions in<br>May 2013)<br>( <u>HemCon &gt; Home</u> ) | "HemCon Bandage PRO works by becoming extremely adherent when<br>in contact with blood. This adhesive-like action seals the wound and<br>controls bleeding. HemCon products are fabricated from chitosan, a<br>naturally occurring, bio-compatible polysaccharide. Because chitosan<br>has a positive charge, it attracts red blood cells, which have a negative<br>charge. The red blood cells create a seal over the wound as they are<br>drawn into the bandage, forming a very tight, coherent seal."                                                                                                                                                                                                                                                                                                                                                                                                              |
| Quick Relief<br>(QR), PRO<br>QR,<br>StatSeal,<br>WoundSeal,<br>TraumaSeal,<br>BioSeal | BioLife, LLC<br>( <u>BioLife</u> )                                                                                                | "WoundSeal/BioSeal powder is composed of a hydrophilic, or water-<br>loving, polymer and potassium ferrate. When the powder is poured onto<br>a bleeding wound, the hydrophilic polymer instantly dehydrates the blood<br>by absorbing only the plasma or liquid portion of the blood stacking the<br>blood solids beneath the powder. Simultaneously the potassium ferrate<br>dissolves, releasing iron that agglomerates (binds together) the blood<br>solids to create an occlusive seal. As manual pressure is applied to the<br>powder, the seal is pushed into contact with the wound. The natural<br>glue-like nature of drying blood adheres the seal to the wound and<br>surrounding skin. The occlusive seal that has formed in seconds stops<br>further bleeding or oozing. Blood solids continue to stack beneath the<br>seal, strengthening it. The natural clotting process proceeds below the<br>seal." |
| QuikClot<br>Combat<br>Gauze;<br>QuikClot                                              | Z-Medica Corporation<br>(ZMedica - QuikClot -<br>Stop Bleeding Fast  <br>Hemostatic agent)                                        | "QuikClot 2x2 is a soft, white, sterile, 2" x 2", nonwoven gauze<br>impregnated with kaolin, an inert mineral that does not contain animal or<br>human proteins or botanicals." "The intrinsic blood clotting pathway is<br>initiated by negatively charged surfaces such as kaolin."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ACS                                                                                   |                                                                                                                                   | <ul> <li>Kaolin promotes the activation of Factor XII (FXII) in the presence of<br/>kallikrein and high molecular weight kininogen. Activated FXII<br/>initiates the intrinsic clotting pathway via the activation of Factor XI<br/>(FXI). Activated FXI continues the coagulation pathway that ends<br/>with the formation of a fibrin clot.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                       |                                                                                                                                   | Kaolin promotes the activation of platelet-associated FXI and it is a distinct and separate molecule from plasma FXI. Activated platelet-associated FXI initiates the intrinsic clotting pathway in normal and FXII deficient patients.<br>QuikClot ACS contains 3 mm diameter zeolite beads packaged in a very porous surgical mesh. Zeolite has a large surface area for fibrin formation, has the ability to activate platelets and contains a cation (Ca++) that is a cofactor in many steps of the coagulation cascade.<br>QuikClot zeolite products adsorb water from blood, concentrating clotting formation at the site.                                                                                                                                                                                                                                                                                       |

 Table 3. Mechanism of action of hemostatic dressings (continued)

| Product                                                                                           | Company*                                                                                       | Mechanism of Action as Described on the Company Web site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rapid<br>deployment<br>hemostat<br>(RDH)<br>Modified<br>Rapid<br>Deployment<br>Hemostat<br>(MRDH) | Marine Polymer<br>Technologies<br>( <u>mrdh   Why mrdh</u> )                                   | MRDH contains pGlcNAc fibers. "When blood contacts pGlcNAc, plasma<br>proteins are rapidly bound and absorbed. Fibers in the matrix interact<br>with platelets, stimulating their activation leading to the onset of the<br>coagulation cascade. A catalytic surface for thrombin generation and<br>accelerated fibrin clot formation results from the interaction of platelets<br>with pGlcNAc. The fibers bind and cause agglutination of RBCs [red<br>blood cells], resulting in the exposure of phosphatidylserine, leading to<br>their activation and direct participation in clotting. The combination of<br>platelet and RBC receptor-based contact with the pGlcNAc fibers results<br>in thrombin generation and fibrin mesh formation. A hemostatic plug<br>forms, which is augmented by additional vasoconstrictive effects due to<br>the release of both thromboxane by activated platelets and endothelin-1<br>by endothelial cells." |
| TraumaDex,<br>Bleed-X,<br>Hemaderm                                                                | Medafor, Inc.<br>Distributed by<br>Emergency Medical<br>Products ( <u>EMP</u> )                | HemaDerm is composed of microporous polysaccharide hemospheres,<br>is applied as a powder, and "is designed to act as a sieve to dehydrate<br>the blood and thus serve to accelerate the natural blood clotting<br>process." The product then forms a gel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UltraClot<br>(InstaClot)<br>BallistiClot                                                          | Emergency Medical<br>Devices, LLC<br>( <u>Emergency Medical</u><br><u>Devices, UltraClot</u> ) | The Web site indicates that a proprietary hemostatic agent is dissolved<br>into the wound from the UltraClot pouch. The FDA documents described<br>the agent as "comprising a clay-based powder contained in a dissolving<br>pouch with a non-stick gauze pad backing that is placed on a moderate<br>to severe wound and held in place until hemostasis is achieved."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 3. Mechanism of action of hemostatic dressings (continued)

\*Company names were obtained through FDA documents or from the product Web site

# **Scope and Key Questions**

## Scope of the Review

The purpose of this evidence report is to present a systematic review and assessment of the biomedical and clinical literature describing prehospital treatment of external hemorrhage caused by traumatic injury. The primary focus of the report is the efficacy of prehospital application of tourniquets and hemostatic dressings to control traumatic external hemorrhage. The need for a systematic review and evidence analysis on this topic was conceived by the National Highway Traffic Safety Administration (NHTSA) during discussions with trauma stakeholders and other Federal agencies. NHTSA has partnered with ECRI Institute's Evidence-based Practice Center (EPC) to undertake this report. The ECRI Institute EPC is one of 11 EPCs designated by the Agency for Healthcare Research and Quality (AHRQ). An original set of key questions were proposed by NHTSA and then refined after discussions with ECRI Institute and experts in the military and EMS communities.

# **Key Questions**

The key questions assessed in this evidence report were developed using the PICOTS approach (populations, interventions, comparators, outcomes, timing, and settings):

- The population of interest is individuals with extremity hemorrhages.
- The interventions of interest are commercially available tourniquets and hemostatic dressings.
- Comparators are external wound pressure and nontourniquet or nonhemostatic interventions.
- Outcomes of interest are limb salvage, hypovolemic shock, survival, and adverse effects.

- Timing is both immediate and long-term.
- The setting is prehospital before any procedures are performed in the hospital emergency department or operating theater.

#### Use of Tourniquets

- Key Question 1. In trauma patients with extremity hemorrhage (excludes junctional hemorrhage) who are treated in the prehospital setting by EMS personnel, what is the effect of tourniquet use (single or double) with or without external wound pressure on limb salvage, hypovolemic shock, survival, and adverse effects compared with external pressure alone or with other nontourniquet interventions?
- Key Question 2. In trauma patients with junctional hemorrhage who are treated in the prehospital setting by EMS personnel, what is the effect of specialized junctional tourniquet use with or without external wound pressure on limb salvage, hypovolemic shock, survival, and adverse effects compared with external pressure alone or with other nonjunctional tourniquet interventions?
- Key Question 3. In trauma patients with extremity hemorrhage (excludes junctional hemorrhage) who are treated in the prehospital setting by EMS personnel, do different brands or models of tourniquets differ from each other in their effect on limb salvage, hypovolemic shock, survival, and adverse effects?
- Key Question 4. In trauma patients with junctional hemorrhage who are treated in the prehospital setting by EMS personnel, do different brands or models of specialized junctional tourniquets differ from each other in their effect on limb salvage, hypovolemic shock, survival, and adverse effects?
- Key Question 5. In trauma patients with external hemorrhage (excludes junctional hemorrhage) who are treated in the prehospital setting by EMS personnel using a tourniquet
  - a. Does the incidence of adverse events vary by the duration of tourniquet use prior to removal?
  - b. Does the incidence of adverse events vary depending on whether tourniquets are removed in the field versus in a facility?

#### Use of Hemostatic Dressings

- Key Question 6. In trauma patients with external hemorrhage (hemorrhage from any body surface) who are treated in the prehospital setting by EMS personnel, what is the effect of hemostatic dressings with or without external wound pressure on limb salvage (if an extremity involved), hypovolemic shock, survival, and adverse effects compared with using nonhemostatic gauze with or without external wound pressure?
- Key Question 7. In trauma patients with external hemorrhage (hemorrhage from any body surface) who are treated in the prehospital setting by EMS personnel, do different brands or types of hemostatic dressings differ from each other in their effect on limb salvage (if an extremity is involved), hypovolemic shock, survival, and adverse effects?

#### Analytic Framework

The analytic framework below (Figure 1) graphically depicts events that individuals with trauma-induced external hemorrhage experience as they are treated with a tourniquet or hemostatic dressing; it begins with identification of hemorrhage (the far left of the figure), moves

to application of various interventions, and ends with patient-oriented outcomes. Key Questions 1 through 7 are represented in the framework by a circled number.

Patient-oriented outcomes are events that directly affect patient health. This report focuses on treatment of patients with trauma-induced external hemorrhage which has the potential to result in patient death or limb amputation. Therefore, the outcomes most directly relevant to patient well-being are survival, limb salvage, and prevention of hypovolemic shock. Potential adverse events associated with tourniquet use (such as myonecrosis, nerve palsy, increased pain, infection, and thrombosis) and hemostatic dressings (such as burns, allergic reactions, infections, and tissue damage) also directly affect patients. Outcomes such as transfusion requirement and hospital length of stay have a less direct impact on patients and were considered intermediate outcomes.





Circles indicate key questions

# 2. Methods

ECRI Institute partners with private and public organizations to perform scientific reviews of a variety of topics. The process of systematic review as practiced by ECRI Institute follows specific prescribed steps:

- 1. The investigators start with formulated "key" questions. These questions test hypotheses and are structured using the PICOTS framework. The focus is on outcomes that are relevant and important to patients (patient-oriented outcomes). The framework is depicted visually in an "analytic framework," used to show the relationship between the key questions and the outcomes used to address these questions. (See Figure 1)
- 2. Inclusion and exclusion criteria for studies to be used in the review are determined based on the specific key questions. Criteria may vary for each question in the review.
- 3. Next, an objective and comprehensive search of the medical literature and gray literature, (i.e., reports, monographs, and studies produced by government agencies, educational facilities, and corporations that do not appear in the peer-reviewed literature) is conducted. The reference lists of included studies are examined for any studies not identified by electronic searches.
- 4. Studies are compared with the inclusion criteria developed before examining the evidence, and those included in the review are then critically appraised, noting features of the design and conduct of the studies that create potential for bias. Risk of bias, in this context, is the extent to which the design and conduct of a single study "protect against all bias in the estimate of treatment effect."<sup>36</sup> Studies with a low potential for bias are typically described as being of "high quality," whereas those with high potential for bias are described as being of "low" or "poor" quality, and those of moderate quality as having intermediate potential for bias. The degree to which a study protects against bias is referred to as "internal validity." Following this appraisal, data are extracted from the included studies and analyzed or summarized as appropriate.
- 5. The body of evidence for each population-intervention-comparator-outcome set is assessed in terms of study designs, overall study limitations, consistency, directness, precision, publication bias, magnitude of effect and other factors to assign an evidence grade.

# Literature Search Strategy

## **Search Strategy**

To identify relevant information on the benefits and harms of prehospital application of tourniquets and hemostatic dressings, we employed the following search strategies:

- Systematic search of 13 external and internal electronic databases, including CINAHL, EMBASE, and Medline from 2001 to the present for fully published, primary, clinical studies. A detailed search strategy and a full explanation of our electronic database search are presented in Appendix A.
- Systematic search of the following databases unlimited by date for secondary publications (e.g., systematic reviews, Health Technology Assessments): The Cochrane Database of Systematic Reviews (Cochrane Reviews), Database of Abstracts of Reviews of Effects (DARE), and Health Technology Assessment and Database (HTA).

- Search for additional published and unpublished studies, which included the following steps:
  - Manual search of bibliographies listed in fully published studies
  - Search and written inquiry to regulatory agencies, including the U.S. Food and Drug Administration (FDA)
  - Search of www.ClinicalTrials.gov and www.controlled-trials.com for ongoing clinical trials
- Publications were also suggested for inclusion by individuals who commented on the draft report.

# **Inclusion Criteria**

We used the following criteria to determine which studies identified by our searches would be included in our analysis. These criteria were developed prior to any review of the clinical literature. Inclusion and exclusion criteria were developed to specify the types of studies appropriate for addressing the Key Questions.

#### Population

- Study must have enrolled human subjects in whom a trauma-induced extremity hemorrhage is treated in a prehospital setting by EMS personnel. Studies of animals were outside the scope of this assessment. However we examined this literature base in a separate part of the report.
- 2. Study must report results separately for extremity and junctional hemorrhage.

#### Intervention

3. Study must evaluate the efficacy of a tourniquet or a hemostatic dressing currently marketed in the United States.

#### Study Design

- 4. Studies may be of any design.
- 5. Studies must have enrolled at least 5 patients per treatment group.

#### Outcomes

- 6. Study must have reported on at least one of the outcomes listed in the Key Questions.
- 7. The reliability and validity of all instruments measuring relevant outcomes, such as activities of daily living and function or pain, must have been addressed in the published literature.

However, for studies not using a validated instrument, we did not necessarily exclude the entire study—only data from instruments in which the psychometric properties were not reported in the published literature.

8. For all outcomes, we considered only time points for which at least 50% of the enrolled participants contributed data.

## Publication Type

9. Study must have been published in English.

Although we recognized that in some situations, excluding non-English studies could lead to bias, we believed that the few instances in which this may occur do not justify the time and cost typically necessary for translation of studies to identify those of acceptable quality for inclusion in our review.

- Study was reported as a full-length, peer-reviewed article.
   Published abstracts and letters alone do not include sufficient details about experimental methods to permit verification and evaluation of study design.<sup>37,38</sup>
- 11. When several sequential reports from the same study center were available, we included outcome data from only the largest, most recent, or most complete report. However, we used relevant data from earlier and smaller reports if the report presented pertinent data not included in the larger, more recent report. This criterion prevents double-counting of patients.

#### **Study Selection and Data Extraction**

Once the searches identified potential references, these were processed using DistillerSR (Evidence Partners, Ottawa, Canada), an online application designed specifically for the screening and data extraction phases of a systematic review. Specific forms were created for title screening, abstract screening, full text screening, and data extraction. During title screening, only titles with no obvious connection to the focus of this review were eliminated. The lead analyst screened all abstracts for their relevance to the report and segregated references into excluded, clinical studies, animal studies, and background references. Although we did not perform dual screening of abstracts, we have included a bibliography of excluded abstracts in Appendix B. After the abstract screening phase full text articles were retrieved. The full texts of clinical studies were screened by the lead analyst to ensure they contained sufficient patient numbers and reported patient-oriented outcomes. Although full text articles were not screened in duplicate, we have included a bibliography of excluded studies with reasons for exclusion in Appendix B. Data extraction forms were used to record data on clinical study design, data collection processes, patients/casualties, and outcomes. Data were extracted by a research analyst and then reviewed by the lead analyst.

# **Risk-of-Bias Assessment of Individual Studies**

After determining which of the publications identified in our searches met our inclusion criteria, we assessed the potential for bias in these studies. Judging study quality by assessing the potential for bias is the first part of grading the strength of an evidence base according to the system detailed in the publication by Viswanathan et al.<sup>36</sup> In this system, the risk-of-bias assessment tool is a set of questions that explicitly evaluates the risk of bias. The questions are geared specifically for the field of research being assessed in the review.

Viswanathan et al. consider "risk of bias to refer to the extent to which a single study's design and conduct protect against all bias in the estimate of effect." Bias is systematic error—as opposed to random error—introduced into a study that leads to an underestimation or an overestimation of the true effect of an intervention.<sup>39</sup> In well-constructed studies, biases are minimized by appropriate study design and conduct, and changes in outcomes and differences in outcomes between groups are definitively attributed to the treatment of interest. For these

reasons, high-quality studies are those in which study design and conduct eliminate or greatly reduce the potential for bias.

Clearly, the nature of emergency medical procedures (particularly in combat situations) does not allow for well-controlled clinical studies. Typically, data collection is retrospective and captures only the procedure of interest without a defined comparison group. Consequently, the risk of bias is likely to be high. However, this does not mean the evidence collected in these studies should be summarily rejected, only that the estimate of effect size is likely to be biased and that perhaps, the true effect size will remain unknown. Nevertheless, when effects are sufficiently large, they may be judged clinically significant despite a high risk of bias.

Some aspects of study design and conduct may enhance data collection in single-arm studies. To reflect this we collected information on the following:

- Was data collection prospective?
- Was a researcher on site to assist with data collection?
- Were medics or patients interviewed about outcomes?
- Were medics or soldiers given specific instructions on how and when to use the tourniquets or hemostatic dressings?

## **Data Synthesis**

For studies of tourniquets, we analyzed the outcomes of survival and amputation. We performed a random effects meta-analysis of available data for the military population, and considered the data on children (defined as younger than 18 years of age) and civilians separately. Statistical heterogeneity was examined using  $I^2$ , but the small number of studies in the comparisons limited our confidence in statistical measures of heterogeneity. Given the short time between injury and assessments of survival and amputation, and given that no studies had concurrent control groups (i.e., not treated with a tourniquet), survival and amputation were treated as dichotomous outcomes and analyzed as event rates with 95% confidence intervals.

For animal model studies we calculated absolute risk differences and relative risk (RR) with 95% confidence intervals for the primarily dichotomous outcomes for individual studies. We calculated odds ratio (OR) with 95% confidence intervals for individual studies in cases in which meta-analyses was possible and calculated a summary OR using a random effects model.

# Strength of the Evidence Base

The overall strength of evidence for each key question and outcome was assessed using the GRADE principles.<sup>40-42</sup> The strength of evidence grade is a composite of the study design, study limitations (risk of bias), consistency, directness, precision, and publication bias domains. These strength of evidence grades are described as High, Moderate, Low or Very Low and reflect decreasing confidence in the estimates of the effects of interventions on outcomes.

# Applicability

Applicability, sometimes referred to as generalizability, is considered separately from judgments about strength of evidence.<sup>43</sup> Applicability is judged from the standpoint of clinical decisionmakers regarding how relevant the evidence is to their specific practice. The evidence must be evaluated to determine whether the patient populations, settings, diseases or conditions,

interventions, comparators, and outcomes are relevant to their decisions. To assess applicability to a particular patient population, one must consider whether studies include the patients of interest or whether the eligibility criteria exclude patients with comorbidities or those in poor health. In other words, the evidence is assessed for its ability to reflect "real world" situations. For this report, we consider whether the populations (including their types of injuries), interventions, and settings described in the published studies are applicable to the civilian population, EMS providers and and a nonmilitary setting.

# **Peer Review**

Nominations for peer reviewers were solicited from several sources, including the TEP and interested Federal agencies. Experts in emergency medical services, emergency medicine, surgery, military combat casualty care, and systematic review methods were invited to provide external peer review of the draft report. Members of the TEP also provided comments. We have addressed reviewer comments, revising the text as appropriate. A list of peer reviewers who submitted comments on the draft report is provided above.

# 3. Results

The results chapter presents our findings, beginning with the results of our literature searches and a description of the included studies. The chapter is organized to present the findings separately for each key question. We also present information on ongoing clinical trials and an assessment of the results of animal model studies.

# **Results of Literature Searches**

Figure 2 is an attrition diagram that provides a visualization of the disposition of references as they were evaluated for possible inclusion in the report. Our searches identified 1,599 potential citations for this report. After examining titles, abstracts, and full text we included 27 clinical studies examining tourniquets and/or hemostatic dressings that met our inclusion criteria.





Identified articles excluded at the abstract level are listed in Table B-1 in Appendix B. At the abstract level, articles were excluded if they were obviously not related to the focus of the evidence report, were not published in English, or were not full length articles (abstracts only). Articles reviewed as full text and then excluded are listed in Table B-2 in Appendix B. This table provides a specific reason for exclusion of each article.

# Key Question 1: Tourniquets Compared With External Pressure

Key Question 1: In trauma patients with extremity hemorrhage (excludes junctional hemorrhage) who are treated in the prehospital setting by EMS personnel, what is the effect of tourniquet use (single or double) with or without external wound pressure on limb salvage, hypovolemic shock, survival, and adverse effects compared with external pressure alone or with other nontourniquet interventions?

#### **Description of Included Studies**

We identified 20 publications of prehospital tourniquet use for trauma-induced extremity hemorrhage. However, four publications did not provide information on outcomes needed for inclusion in this report: Lairet et al.,<sup>44</sup> Gerhardt et al.,<sup>45</sup> Kragh et al.,<sup>46</sup> Kragh et al.<sup>47</sup> In two instances, the same study population was assessed in two separate publications. Kragh et al.<sup>48</sup> and Kragh et al.<sup>49</sup> used the same set of 499 patients and Kragh et al.<sup>11</sup> and Kragh et al.<sup>10</sup> used the same set of 232 patients. The 16 included publications are listed in Table 4 along with the setting where the data on tourniquet use were collected. Fourteen of the 16 studies were conducted in military settings: the U.S. military in Iraq and Afghanistan (8 studies), the U.K. military (3 studies), the Israeli military (2 studies), and Canadian military (1 study). Only one study, Kalish<sup>50</sup> reported data from a civilian setting. The study by Kragh et al. 2012<sup>51</sup> described 88 pediatric cases included in the Joint Theater Trauma Registry.

The outcomes reported in these studies are listed in Table 5. Thirteen of the 16 included studies reported data on deaths, 11 reported data on adverse events, 8 reported data on amputations, and none reported data on shock.

Seven of the studies used prospective data collection (see Table 6). Three of the studies had a researcher on site to assist with data collection. Most studies provided some general information on how the tourniquets were to be used within the study context, but only a few provided specific details on instructions given to participants. However, studies from the U.S. military were likely using TCCC practices when data were collected after 2005 and it is likely that tourniquets were used aggressively as a first option for traumatic extremity hemorrhage.

A few studies attempted to draw comparisons between casualties treated with a tourniquet and similar casualties not treated with a tourniquet (see Table 5). For instance, Kotwal et al.<sup>12</sup> reported the number of casualties treated with compression dressings versus tourniquets, but only reported outcomes for those treated with tourniquets. Beekley et al.<sup>52</sup> reported outcome data for tourniquet- and nontourniquet-treated casualties, but failed to report what prehospital treatments the nontourniquet group received. Clasper et al.<sup>53</sup> matched surviving tourniquet-treated casualties with surviving nontourniquet-treated casualties to examine the rate of adverse events. As Clasper et al. pointed out, "in a standard retrospective study it is likely that there would be considerable bias if simple comparison was made between the two groups as it is likely that those casualties with more severe injuries would have required a tourniquet, but those with a more severe injury are also likely to have worse outcomes and experience more complications."

| Reference                           | Setting                                                | Registry or Hospital                                                                                                                              | Period of Data<br>Collection |
|-------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Eastridge et al. 2012 <sup>13</sup> | U.S. military Iraq/Afghanistan                         | Records from Armed Forces Medical<br>Examiner System (AFMES) and Defense<br>Medical Mortality Registry, which analyzes<br>all active-duty deaths. | Oct 2001 to<br>June 2011     |
| King et al. 2012 <sup>54</sup>      | U.S. military Afghanistan                              | Patients presenting to a forward surgical<br>team (FST) at Forward Operating Base<br>Shank (Level II) in Afghanistan                              | Aug 2011 to<br>Nov 2011      |
| Kragh et al. 2012 <sup>51</sup>     | U.S. military Iraq/Afghanistan<br>pediatric casualties | Joint Theater Trauma Registry                                                                                                                     | May 2003 to<br>Dec 2009      |
| Kotwal et al. 2011 <sup>12</sup>    | U.S. military Iraq/Afghanistan                         | Prehospital Trauma Registry (PHTR)<br>Casualties from the 75th Ranger Regiment                                                                    | Oct 2001 to<br>March 2010    |
| Kragh et al. 2011 <sup>49</sup>     | U.S. military Iraq                                     | U.S. combat support hospital in Baghdad,<br>Iraq                                                                                                  | March 2006 to<br>March 2007  |
| Kragh et al. 2011 <sup>48</sup>     | U.S. military Iraq                                     | U.S. combat support hospital in Baghdad,<br>Iraq                                                                                                  | March 2006 to<br>March 2007  |
| Brown et al. 2010 <sup>55</sup>     | U.K. military Iraq/Afghanistan                         | Joint Theater Trauma Registry                                                                                                                     | Aug 2003 to<br>May 2008      |
| Brodie et al. 2009 <sup>56</sup>    | U.K. military Iraq/Afghanistan                         | Joint Theatre Trauma Registry                                                                                                                     | Feb 2003 to<br>Sept 2007     |
| Clasper et al. 2009 <sup>53</sup>   | U.K. military Iraq/Afghanistan                         | Joint Theatre Trauma Register                                                                                                                     | Dec 2003 to<br>May 20008     |
| Kragh et al. 2009 <sup>11</sup>     | U.S. military Iraq                                     | U.S. combat support hospital in Baghdad,<br>Iraq                                                                                                  | March to<br>Oct 2006         |
| Tien et al. 2009 <sup>57</sup>      | Canadian military Afghanistan                          | Role 3 multinational medical unit (MMU) at<br>Kandahar Airfield Base and Canadian<br>Trauma Registry                                              | Feb 2006 to<br>May 2006      |
| Beekley et al. 2008 <sup>52</sup>   | U.S. military Iraq                                     | The 31st combat support hospital in Iraq                                                                                                          | Jan 2004 to<br>Dec 2004      |
| Dayan et al. 2008 <sup>58</sup>     | Israeli military                                       | Israeli civilian emergency department                                                                                                             | 2006                         |
| Kalish et al. 2008 <sup>50</sup>    | U.S. civilian                                          | Boston Medical center and Boston EMS Trauma Database                                                                                              | Jan 1999 to<br>April 2006    |
| Kragh et al. 2008 <sup>10</sup>     | U.S. military Iraq                                     | U.S. combat support hospital in Baghdad,<br>Iraq                                                                                                  | March 2006 to<br>Oct 2006    |
| Lakstein et al. 2003 <sup>59</sup>  | Israeli military                                       | Israeli defense force personnel in a military prehospital setting                                                                                 | Jan 1997 to<br>Jan 2001      |

 Table 4.
 List of included studies of prehospital tourniquet use

| Reference                                                                                                           | Number of<br>Casualties<br>Treated                                                                                                                  | Patient Characteristics                                                                                                                                                                           | Amputations | Deaths | Shock | Adverse<br>Events |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|-------------------|
| Eastridge et al.<br>2012 <sup>13</sup>                                                                              | 976                                                                                                                                                 | Not reported                                                                                                                                                                                      |             | х      |       |                   |
| King et al. 2012 <sup>54</sup>                                                                                      | 54 treated with<br>Combat Application<br>Tourniquet/Special<br>Operations Forces<br>Tactical Tourniquet<br>(CAT/SOFTT)                              | Not reported                                                                                                                                                                                      |             | х      |       | x                 |
| Kragh et al. 2012 <sup>51</sup>                                                                                     | 88 pediatric<br>casualties treated<br>with CAT                                                                                                      | 72 were male and 16 were<br>female patients. Mean age<br>was 11 years (median, 11<br>years; range, 4–17 years).<br>Injuries: explosion 64%,<br>gunshot 30%, other 6%.                             |             | X      |       |                   |
| Kotwal et al. 2011 <sup>12</sup>                                                                                    | 66 treated with<br>tourniquets<br>394 treated with<br>compression<br>dressings                                                                      | All casualties were male,<br>with age at time of injury<br>ranging from 18.9 to 52.9<br>years. Injuries: explosion<br>67%, gunshot 24%, blunt<br>trauma 6%.                                       | x           | x      |       |                   |
| Kragh et al. 2011 <sup>49</sup>                                                                                     | 499                                                                                                                                                 | 96% male, average age 29<br>years, 16 were children<br>and 5 elderly. Injury:<br>explosion 75%                                                                                                    |             | x      |       | x                 |
| Kragh et al. 2011 <sup>48</sup><br>Same study as<br>Kragh et al. 2011 <sup>49</sup><br>but reporting<br>morbidities | 499                                                                                                                                                 | 96% male, average age 29<br>years, 16 were children<br>and 5 elderly. Injury:<br>explosion 75%                                                                                                    |             |        |       | x                 |
| Brown et al. 2010 <sup>55</sup>                                                                                     | 23                                                                                                                                                  | Median age 26 years,<br>range 18–42 years, not<br>specific to tourniquet<br>patients. Injuries for entire<br>patient pool: explosion<br>62%, gunshot 38%.                                         |             |        |       | x                 |
| Brodie et al. 2009 <sup>56</sup>                                                                                    | 70 treated with<br>CAT                                                                                                                              | Gender and age data not<br>reported. Injuries:<br>explosion 86%, gunshot<br>14%.                                                                                                                  | x           | x      |       | x                 |
| Clasper et al. 2009 <sup>53</sup>                                                                                   | 22 casualties<br>treated with<br>tourniquets<br>matched to 22<br>casualties not<br>treated with<br>tourniquets; all<br>casualties had a<br>fracture | Tourniquet group: mean<br>age of 26.6 years, range<br>19–37 years. Injuries:<br>explosion 32%<br>Nontourniquet group:<br>mean age of 25.7 years,<br>range 19–37 years.<br>Injuries: explosion 64% | x           |        |       | x                 |

 Table 5. Outcomes reported in studies of prehospital tourniquets

| Reference                                                                                          | Number of<br>Casualties<br>Treated                                                                           | Patient Characteristics                                                                                                                                                                           | Amputations | Deaths | Shock | Adverse<br>Events |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|-------------------|
| Kragh et al. 2009 <sup>11</sup><br>Reassessment of<br>data from<br>Kragh et al. 2008 <sup>10</sup> | 232 total casualties<br>were included, with<br>194 of these<br>having prehospital<br>tourniquets placed.     | 95% male, mean age of 29<br>years, range 4–70 years,<br>9 children and 1 elderly.<br>Injuries: explosion 63%,<br>gunshot 23%.                                                                     | x           | x      |       | x                 |
| Tien et al. 2009 <sup>57</sup>                                                                     | 6                                                                                                            | Entire study examined 134<br>patients, 96% male, mean<br>age of 26 years. Injuries:<br>explosion 34%, gunshot<br>32%, blunt 22%.                                                                  |             | x      |       |                   |
| Beekley et al.<br>2008 <sup>52</sup>                                                               | 67 casualties<br>treated with<br>tourniquets<br>compared with 98<br>patients not treated<br>with tourniquets | Tourniquet group: 97%<br>male, mean age of 29<br>years. Injuries: explosion<br>64%, gunshot 30%.<br>Nontourniquet group: 96%<br>male, mean age of 25.<br>Injuries: explosion 70%,<br>gunshot 27%. | x           | x      |       | x                 |
| Dayan et al. 2008 <sup>58</sup>                                                                    | 5 cases with<br>prolonged<br>tourniquet use                                                                  | All males, 20–22 years<br>old. Injuries: explosion=1,<br>gunshot=4.                                                                                                                               | Х           | х      |       | Х                 |
| Kalish et al. 2008 <sup>50</sup>                                                                   | 11 civilian<br>extremity<br>hemorrhages                                                                      | All males, mean age of 27<br>years, gunshot wounds<br>55%, stab wounds 27%,<br>lacerations 18%.                                                                                                   |             | x      |       | x                 |
| Kragh et al. 2008 <sup>10</sup>                                                                    | 232 total casualties<br>were included, with<br>194 of these<br>having prehospital<br>tourniquets placed.     | 95% male, mean age of 29<br>years, range 4–70 years, 9<br>children and 1 elderly.<br>Injuries: explosion 63%,<br>gunshot 23%.                                                                     | x           | x      |       | x                 |
| Lakstein et al.<br>2003 <sup>59</sup>                                                              | 91 casualties<br>treated with<br>silicone and<br>improvised<br>tourniquets                                   | Gender and mean age not<br>reported. Injuries:<br>explosion 73%, gunshot<br>27%.                                                                                                                  | x           | X      |       | x                 |

Table 5. Outcomes reported in studies of prehospital tourniquets (continued)

#### Table 6. Data collection process in studies of prehospital tourniquet use

| Reference                           | Method of<br>Data<br>Collection | Researcher<br>on Site | Medics or<br>Patients<br>Interviewed | Instructions for Tourniquet Use                                                                                                                            |
|-------------------------------------|---------------------------------|-----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eastridge et al. 2012 <sup>13</sup> | Retrospective                   | No                    | No                                   | Tactical Combat Casualty Care (TCCC) training was available halfway through the period of data collection.                                                 |
| King et al. 2012 <sup>54</sup>      | Prospective                     | No                    | Yes                                  | Medics were given feedback on their<br>performance, but the paper does not specify<br>whether instructions were provided before<br>the study. TCCC likely. |
| Kragh et al. 2012 <sup>51</sup>     | Retrospective                   | No                    | No                                   | None stated. TCCC likely.                                                                                                                                  |
| Kotwal et al. 2011 <sup>12</sup>    | Prospective                     | Yes                   | Yes                                  | The entire fighting force was trained in TCCC.                                                                                                             |

| Table 6. Data collection process in s | tudies of prehospi | ital tourniquet use ( | (continued) |
|---------------------------------------|--------------------|-----------------------|-------------|
|---------------------------------------|--------------------|-----------------------|-------------|

| Reference                          | Method of<br>Data<br>Collection | Researcher<br>on Site | Medics or<br>Patients<br>Interviewed | Instructions for Tourniquet Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------|---------------------------------|-----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kragh et al. 2011 <sup>49</sup>    | Prospective                     | Yes                   | Yes                                  | All deployed U.S. service personnel get<br>tourniquet training with instructions to apply<br>them as soon as possible to stop potentially<br>lethal external limb bleeding; the soldiers<br>were taught how to use the tourniquets using<br>a simplified form of TCCC in Prehospital<br>Trauma Life Support.                                                                                                                                                                                                                                             |
| Kragh et al. 2011 <sup>48</sup>    | Prospective                     | Yes                   | Yes                                  | TCCC practices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Brown et al. 2010 <sup>55</sup>    | Retrospective                   | No                    | No                                   | Medical care by the British military includes initial care for stabilization by a medic and evacuation as necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Brodie et al. 2009 <sup>56</sup>   | Retrospective                   | No                    | No                                   | C>ABC [catastrophic hemorrhage control<br>before airway, breathing, and circulation] to<br>reflect the importance of rapidly controlling<br>external hemorrhage. This concept is firmly<br>embedded in training at all levels of provider<br>in the early management of severe trauma.                                                                                                                                                                                                                                                                   |
| Clasper et al. 2009 <sup>53</sup>  | Retrospective                   | No                    | No                                   | None stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kragh et al. 2009 <sup>11</sup>    | Prospective                     | No                    | No                                   | TCCC practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tien et al. 2009 <sup>57</sup>     | Prospective                     | No                    | No                                   | TCCC practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Beekley et al. 2008 <sup>52</sup>  | Retrospective                   | Νο                    | No                                   | At the time of the initiation of the data<br>collection for this study (July 2004),<br>standardized tourniquets were just starting to<br>be deployed into Afghanistan and Iraq, but a<br>liberalized policy of tourniquet use—using a<br>tourniquet as a first-line treatment for<br>extremity hemorrhage in casualties under<br>fire—although standard in the special<br>operations arena, had not been widely<br>disseminated through conventional forces.                                                                                             |
| Dayan et al. 2008 <sup>58</sup>    | Retrospective                   | No                    | No                                   | Israeli Defense Force (IDF) protocols for<br>tourniquet use on the battlefield: amputation<br>of a limb, multiple-site injury, uncontrolled<br>bleeding from a major limb vessel, multiple-<br>casualty event, and night scenario.                                                                                                                                                                                                                                                                                                                       |
| Kalish et al. 2008 <sup>50</sup>   | Retrospective                   | No                    | No                                   | None stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kragh et al. 2008 <sup>10</sup>    | Prospective                     | No                    | No                                   | TCCC practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lakstein et al. 2003 <sup>59</sup> | Retrospective                   | No                    | No                                   | "Physicians and medics assigned to combat<br>missions carry tourniquets and use them<br>routinely, minutes after injury. In addition, IDF<br>combat soldiers are regularly equipped with<br>tourniquets and trained to identify extremity<br>hemorrhage and use the tourniquets to stop<br>the bleeding."<br>IDF indications for tourniquet use: Failure to<br>stop bleeding by direct pressure bandaging,<br>injury does not allow direct control of<br>bleeding with a bandage, or objective factors,<br>amputation, bleeding from multiple locations. |

# **Key Points**

- No studies identified for this report provide a direct comparison of tourniquets and compression for treating trauma patients with extremity hemorrhage. In the military setting, tourniquets are considered an appropriate first response to traumatic extremity hemorrhage.
- Based on 13 studies reporting mortality data for casualties treated with tourniquets, prehospital tourniquets are an effective treatment method for the prevention of death due to exsanguination. The reported survival rates for casualties treated with prehospital tourniquets ranged from 87% to 100%.
- Based on a meta-analysis of 9 studies in military settings reporting adequate data, the survival rate for casualties treated with prehospital tourniquets was 91.9% with 95% confidence intervals of 88.1% to 94.6%.
- Based on 8 studies reporting amputation data for casualties treated with tourniquets, prehospital tourniquets appear to be effective preventing amputation. The reported amputation rates for casualties treated with prehospital tourniquets ranged from 13% to 28%.
- Based on a meta-analysis of 6 studies in military settings, the amputation rate for surviving casualties treated with prehospital tourniquets was 19.2% with 95% confidence intervals of 15.8% to 23.2%.
- Insufficient evidence was available to examine the influence of prehospital tourniquet use on hypovolemic shock.
- Based on 11 studies reporting adverse-event data for casualties treated with tourniquets, prehospital tourniquets are associated with temporary nerve palsy, fasciotomies, and wound infection.

# **Detailed Synthesis**

Key Question 1 could not be assessed directly because no studies provided a direct comparison of prehospital tourniquet use with prehospital use of compression to treat extremity hemorrhage. The available study data were primarily drawn from military experience during the wars in Iraq and Afghanistan. At the start of those wars, prehospital use of tourniquets was not a common practice. Modern tourniquets such as the CAT were not provided to most troops until late 2005 and were not universally implemented until 2007. Thus, an analysis comparing deaths associated with extremity hemorrhage before and after widespread tourniquet use could provide indirect evidence of the effectiveness of prehospital tourniquets. This comparison was undertaken by Eastridge et al. in 2012.<sup>13</sup> They examined all battlefield fatalities from October 2001 to June 2011 and found 976 potentially survivable deaths, of which roughly 91% were associated with hemorrhage. Extremity hemorrhage accounted for 13.5% of the hemorrhage fatalities. According to their analysis the death rate from extremity hemorrhage was 23.3 deaths per year prior to widespread systematic tourniquet use, but decreased to 17.5 deaths per year from 2006 to 2007, and further decreased to 3.5 deaths per year after full implementation of tourniquet use and training was completed. The transition from treating extremity hemorrhage with compression to the prehospital use of tourniquets as the main treatment option was associated with an 85% reduction in extremity hemorrhage-related deaths.

Results from studies reporting mortality data are presented in Table 7. The studies are consistent in reporting 87% survival or better for casualties treated with prehospital tourniquets (see Figure 3). The study by Eastridge et al. did not provide data that could be used in the meta-analysis, and the study by Dayan et al. was a special case of five casualties with prolonged tourniquet use, so neither study was included in the pooled analysis. Meta-analysis of the nine studies reporting survival for adult military casualties treated with tourniquets demonstrated a summary effect size estimate for survival of 91.9% with 95% confidence intervals of 88.1 % to 94.6% (see Figure 4). Findings in the study of children were similar (92%, with CI 84% to 96%),<sup>51</sup> as were those in the study of civilian casualties (91%, CI 56% to 99%).

| Reference                              | Number of<br>Casualties Treated                                                                                                            | Mortality                                               | Note About Mortality Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eastridge et al.<br>2012 <sup>13</sup> | Number of casualties<br>treated with a<br>tourniquet was not<br>reported.                                                                  | 976 potentially<br>survivable (PS)<br>deaths            | The primary injury/physiologic focus of PS acute<br>mortality was associated with hemorrhage (90.9%)<br>and airway compromise (8.0%). For the site of lethal<br>hemorrhage "the most substantial anatomic region of<br>hemorrhage was truncal (67.3%), followed by<br>junctional (19.2%) and peripheral-extremity (13.5%)<br>hemorrhage." "Before the introduction of<br>tourniquets, the death rate from peripheral-extremity<br>hemorrhage was 23.3 deaths per year, which was<br>reduced to 17.5 deaths per year during the training<br>and dissemination period from 2006 to 2007. After<br>full implementation, this number was reduced to 3.5<br>deaths per year, an 85% decrease in mortality." |
| King et al.<br>2012 <sup>54</sup>      | 54 treated with<br>Combat Application<br>Tourniquet/Special<br>Operations Forces<br>Tactical Tourniquet<br>(CAT/SOFTT)<br>tourniquets used | No deaths at the<br>Forward Surgical<br>Team (Level II) | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kragh et al.<br>2012 <sup>51</sup>     | 88 pediatric<br>casualties treated<br>with CAT tourniquets                                                                                 | 7                                                       | Survival rate was 93%. However 6 of the deaths did<br>not have extremity wounds or external injury that<br>would warrant a tourniquet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kotwal et al.<br>2011 <sup>12</sup>    | 66 treated with<br>tourniquets<br>394 treated with<br>compression<br>dressings                                                             | 2 treated with<br>tourniquets                           | Survival rate was 94% for casualties treated with a tourniquet. The report notes that of the fatalities including extremity hemorrhage exsanguination "none were potentially survivable through additional prehospital medical intervention."<br>No information is reported on outcomes for casualties treated with compression dressings.                                                                                                                                                                                                                                                                                                                                                             |
| Kragh et al.<br>2011 <sup>49</sup>     | 425 treated with tourniquets                                                                                                               | 55                                                      | Survival rate was 87% for all casualties treated with<br>tourniquets (n=499), prehospital and emergency<br>hospital.<br>10 casualties with extremity hemorrhage could not be<br>treated with a tourniquet and died.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Brodie et al.<br>2009 <sup>56</sup>    | 70 treated with CAT                                                                                                                        | 9                                                       | Survival rate was 87%. According to the report, deaths were not related to tourniquet use but were associated with more severe injuries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Table 7. Studies of prehospital tourniquets reporting data on mortality

| Reference                             | Number of<br>Casualties Treated                                                                                                                                                                                                                                                                                 | Mortality                              | Note About Mortality Data                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kragh et al.<br>2009 <sup>11</sup>    | 232 total casualties<br>were included, with<br>194 of these having<br>prehospital<br>tourniquets placed.                                                                                                                                                                                                        | 22                                     | Survival rate was 89%.                                                                                                                                                                                                                                                                                                                                                                                                |
| Tien et al. 2009 <sup>57</sup>        | 6                                                                                                                                                                                                                                                                                                               | 0                                      | No deaths                                                                                                                                                                                                                                                                                                                                                                                                             |
| Beekley et al.<br>2008 <sup>52</sup>  | <ul> <li>165 were identified<br/>who had traumatic<br/>extremity amputation,<br/>major extremity<br/>vascular injury, or<br/>who had a<br/>prehospital tourniquet<br/>placed.</li> <li>67 casualties treated<br/>with tourniquets<br/>compared with 98<br/>patients not treated<br/>with tourniquets</li> </ul> | 3 tourniquets<br>4 non-<br>tourniquets | 3 of the 67 casualties with tourniquets died (survival<br>rate of 96%) compared to 4 of 98 casualties without<br>tourniquets (survival rate of 96%). The study was<br>"biased toward those patients that survived<br>evacuation off the battlefield to the CSH [combat<br>support hospital]. We were unable to obtain data on<br>casualties that died before reaching surgical care<br>during the study time period." |
| Dayan et al.<br>2008 <sup>58</sup>    | 5 cases with<br>prolonged tourniquet<br>use                                                                                                                                                                                                                                                                     | No deaths                              | Special report of 5 cases with nerve damage after prolonged tourniquet use.                                                                                                                                                                                                                                                                                                                                           |
| Kalish et al.<br>2008 <sup>50</sup>   | 11 civilian extremity<br>hemorrhages                                                                                                                                                                                                                                                                            | 1                                      | Survival rate of 91%.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kragh et al.<br>2008 <sup>10</sup>    | 232 casualties with<br>tourniquet use<br>prehospital and in the<br>emergency<br>department.                                                                                                                                                                                                                     | 18                                     | 18 deaths among 256 prehospital tourniquets used (93% survival rate). Number of prehospital casualties was not reported.                                                                                                                                                                                                                                                                                              |
| Lakstein et al.<br>2003 <sup>59</sup> | 91 casualties treated<br>with silicone and<br>improvised<br>tourniquets                                                                                                                                                                                                                                         | 0                                      | No deaths                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 7. Studies of prehospital tourniquets reporting data on mortality (continued)


| Study name             |               |                |                |           | E     | ivent rat | e and 9 | 95%Cl | _    |
|------------------------|---------------|----------------|----------------|-----------|-------|-----------|---------|-------|------|
|                        | Event<br>rate | Lower<br>limit | Upper<br>limit | Total     |       |           |         |       |      |
| King et al. 2012       | 0.99          | 0.87           | 1.00           | 54 / 54   |       |           |         |       |      |
| Kragh et al. 2012      | 0.92          | 0.84           | 0.96           | 81 / 88   |       |           |         |       | -    |
| Kotwal et al. 2011     | 0.97          | 0.89           | 0.99           | 64 / 66   |       |           |         |       | -    |
| Kragh et al. 2011      | 0.87          | 0.84           | 0.90           | 370 / 425 |       |           |         |       |      |
| Brodie et al. 2009     | 0.87          | 0.77           | 0.93           | 61 / 70   |       |           |         |       | -=   |
| Kragh et al. 2009      | 0.89          | 0.84           | 0.93           | 173 / 194 |       |           |         |       |      |
| Tien et al. 2009       | 0.93          | 0.42           | 1.00           | 6/6       |       |           |         | +     | ∎    |
| Beekley et al. 2008    | 0.96          | 0.87           | 0.99           | 64 / 67   |       |           |         |       | -    |
| Kalish et al. 2008     | 0.91          | 0.56           | 0.99           | 10 / 11   |       |           |         | I—    |      |
| Kragh et al. 2008      | 0.93          | 0.89           | 0.96           | 238 / 256 |       |           |         |       |      |
| Lakstein et al. 2003   | 0.99          | 0.92           | 1.00           | 91 / 91   |       |           |         |       | -+   |
|                        |               |                |                |           | -1.00 | -0.50     | 0.00    | 0.50  | 1.00 |
| Survival rates, 95% Cl |               |                |                |           |       |           |         | 5% CI |      |

## Survival Event Rates - All Tourniquet Studies

Figure 4. Survival rates (short-term) in casualties treated with a prehospital tourniquet, only military tourniquet studies included

# Survival Event Rates - Military Tourniquet Studies

| Study name           |               |                |                |           | _     | Event r | ate anc  | 95% C   | <u>I</u>    |
|----------------------|---------------|----------------|----------------|-----------|-------|---------|----------|---------|-------------|
|                      | Event<br>rate | Lower<br>limit | Upper<br>limit | Total     |       |         |          |         |             |
| King et al. 2012     | 0.991         | 0.871          | 0.999          | 54 / 54   |       |         |          | 1       |             |
| Kotwal et al. 2011   | 0.970         | 0.887          | 0.992          | 64 / 66   |       |         |          |         | -           |
| Kragh et al. 2011    | 0.871         | 0.835          | 0.899          | 370 / 425 |       |         |          |         |             |
| Brodie et al. 2009   | 0.871         | 0.771          | 0.932          | 61 / 70   |       |         |          |         | -=          |
| Kragh et al. 2009    | 0.892         | 0.840          | 0.928          | 173 / 194 |       |         |          |         |             |
| Tien et al. 2009     | 0.929         | 0.423          | 0.996          | 6/6       |       |         |          | -       |             |
| Beekley et al. 2008  | 0.955         | 0.870          | 0.985          | 64 / 67   |       |         |          |         | -           |
| Kragh et al. 2008    | 0.930         | 0.891          | 0.955          | 238 / 256 |       |         |          |         |             |
| Lakstein et al. 2003 | 0.995         | 0.919          | 1.000          | 91 / 91   |       |         |          |         | -           |
| Summary Event Rate   | 0.919         | 0.881          | 0.946          |           |       |         |          |         | •           |
|                      |               |                |                |           | -1.00 | -0.50   | 0.00     | 0.50    | 1.00        |
|                      |               |                |                |           |       | Su      | rvival E | vent Ra | te (95% Cl) |

The studies providing amputation rates among casualties treated with a prehospital tourniquet reported rates of 13% to 28%. Results from studies reporting amputation data are presented in Table 8. We calculated a summary event rate estimate of 19%, with 95% confidence interval from 16% to 23% (see Figure 5). (The study by Kragh et al.<sup>11</sup> was not included in the analysis because the data were reported by limbs, not individual casualties.) A before-and-after analysis similar to the one performed by Eastridge et al. has not been done for amputations. Some authors have suggested that amputation rates may be higher after implementation of tourniquet use because more casualties survive the initial traumatic injury, but require limb amputations due to the severity of the injury.

| Reference                          | Number of Casualties Treated                                                                                                                                 | Amputations                                                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kotwal et al. 2011 <sup>12</sup>   | 66 casualties treated with tourniquets 394 treated with compression                                                                                          | 10 amputations among 62 survivors.<br>Amputation rate was 16%.<br>No information is reported on outcomes for<br>casualties treated with compression<br>dressings. |
| Brodie et al. 2009 <sup>56</sup>   | 70 treated with CAT                                                                                                                                          | 8 amputations among 61 survivors.<br>Amputation rate was 13%.                                                                                                     |
| Clasper et al. 2009 <sup>53</sup>  | 22 casualties treated with tourniquets matched to 22 casualties not treated with tourniquets; all casualties had a fracture                                  | 3 tourniquet casualties and 3 non-<br>tourniquet casualties. Amputation rate was<br>13.6%.                                                                        |
| Kragh et al. 2009 <sup>11</sup>    | 232 total casualties were included with 194 of these having prehospital tourniquets placed.                                                                  | 97 limbs of 307 treated with tourniquets<br>were amputated among the 232 total<br>casualties. Amputation rate was 32% of<br>limbs.                                |
| Beekley et al. 2008 <sup>52</sup>  | 67 treated with prehospital tourniquets<br>98 not treated with prehospital tourniquets                                                                       | 28% of tourniquet patients vs. 25% of no-<br>tourniquet patients required debridement<br>amputation                                                               |
| Dayan et al. 2008 <sup>58</sup>    | 5 cases with prolonged tourniquet use                                                                                                                        | 1 amputation. Amputation rate of 20%.                                                                                                                             |
| Kragh et al. 2008 <sup>10</sup>    | 232 casualties with tourniquet use prehospital<br>and in the emergency department. Data were<br>reported for number of tourniquets used not per<br>casualty. | 51 amputations among 256 prehospital tourniquet uses (20% amputation rate).                                                                                       |
| Lakstein et al. 2003 <sup>59</sup> | 91 casualties treated with silicone and improvised tourniquets                                                                                               | 16 amputations among 91 survivors.<br>Amputation rate of 18%.                                                                                                     |

Table 8. Studies of prehospital tourniquets reporting data on amputations

Figure 5. Amputation rates in surviving casualties treated with a prehospital tourniquet, military studies only



#### **Amputation Event Rates - Military Tourniquet Studies**

No studies reported data that could be used to analyze any potential connection between prehospital tourniquet use and hypovolemic shock.

Studies reporting adverse events associated with prehospital tourniquet use are listed in Table 9.

| Reference                           | Number of<br>Casualties Treated                                               | Adverse Events                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kragh et al.<br>2011 <sup>49</sup>  | 499                                                                           | 7 instances of temporary nerve palsy. 15 patients had a tourniquet applied without a medical or tactical indication. None of the limbs in the 15 patients suffered morbidity.                                                                                                                                                                                                                                                                          |
| Kragh et al.<br>2011 <sup>48</sup>  | Same study as Kragh<br>et al. 2011 <sup>49</sup> but<br>reporting morbidities | All patients experiencing nerve palsy at tourniquet site had prehospital use (n=8 patients). Most (82%) of the nerve palsies were in the arm. "All nerve palsies at the level of the tourniquet resolved within 3 minutes to 3 days except in one Iraqi transferred with incompletely resolved nerve palsy on the third day. Tourniquet duration was not associated with nerve palsy in that those casualties with greater than 4 hours use had none." |
| Brown et al.<br>2010 <sup>55</sup>  | 23                                                                            | 12 infections. "The use of tourniquets to control bleeding in the field was associated with infections on univariate analysis, but this association is likely related to the severity of injury as use of tourniquet was not relevant in multivariate analysis."                                                                                                                                                                                       |
| Brodie et al.<br>2009 <sup>56</sup> | 70 treated with CAT                                                           | Two cases of compartment syndrome, one ulnar nerve palsy.                                                                                                                                                                                                                                                                                                                                                                                              |

Table 9. Studies of prehospital tourniquets reporting adverse events

| Reference                             | Number of<br>Casualties Treated                                                                                                                             | Adverse Events                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clasper et al.<br>2009 <sup>53</sup>  | 22 casualties treated<br>with tourniquets<br>matched to 22<br>casualties not treated<br>with tourniquets; all<br>casualties had a                           | "The most common complication was superficial infection, occurring in 50% and there was no difference in the incidence between the 2 groups" [prehospital tourniquet use vs. no tourniquet use] Other types of adverse events: superficial wound infection (11 vs. 11; no difference); deep infection 7 (prehospital tourniquet) vs. 1 (no prehospital tourniquet), $p < 0.05$ ; flap failure: 1 (prehospital tourniquet) |
|                                       | fracture                                                                                                                                                    | vs. 0 (no tourniquet).                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kragh et al.<br>2009 <sup>11</sup>    | 232 total casualties<br>were included, with<br>194 of these having<br>prehospital<br>tourniquets placed.                                                    | At the time of tourniquet application in prehospital patients, shock was<br>already present in 6 casualties, 5 of which went on to die. Of the 188<br>casualties (prehospital) for whom shock was not present at tourniquet<br>application, 17 went on to die.                                                                                                                                                            |
| Beekley et al.<br>2008 <sup>52</sup>  | 67 casualties treated<br>with tourniquets<br>compared with 98<br>patients not treated<br>with tourniquets                                                   | "We encountered no significant adverse sequelae related to prehospital tourniquet use. The absence of neurological complications in our dataset may be related to the relatively short prehospital tourniquet times documented (mean, 70 minutes)."                                                                                                                                                                       |
| Dayan et al.<br>2008 <sup>58</sup>    | 5 cases with<br>prolonged tourniquet<br>use                                                                                                                 | 1 nerve palsy (in patients with >20 hours tourniquet duration)                                                                                                                                                                                                                                                                                                                                                            |
| Kalish et al.<br>2008 <sup>50</sup>   | 11 civilian extremity<br>hemorrhages                                                                                                                        | 2 patients underwent fasciotomies, which both closed prior to hospital discharge.                                                                                                                                                                                                                                                                                                                                         |
| Kragh et al.<br>2008 <sup>10</sup>    | 232 casualties with<br>tourniquet use<br>prehospital and in the<br>emergency<br>department. Data<br>were reported for<br>number of<br>tourniquets used, not | "Tourniquet duration may have increased risk of only two morbidities,<br>amputation and fasciotomy."<br>Of prehospital tourniquet uses, 139 morbidities were reported, including<br>49 fasciotomies, 51 amputations, 18 deaths, 9 palsies, 6 clots,<br>3 myonecroses, 2 acute renal failure, 1 rigor.                                                                                                                     |
| Lakstein et al.<br>2003 <sup>59</sup> | 91 casualties treated with silicone and                                                                                                                     | Neurologic complications were recorded in 7 limbs of 5 patients.<br>"Ischemic time for these cases ranged between 109 and 187 min."                                                                                                                                                                                                                                                                                       |
| -                                     | improvised<br>tourniquets                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table 9. Studies of prehospital tourniquets reporting adverse events (continued)

## Strength of Evidence

The risk of bias associated with these studies was rated high because they are all single-arm studies with no comparison group (observational case series studies). The true effect of prehospital tourniquet use is likely combined with the effects of training and other medical interventions intended to improve prehospital care. Consequently, it is difficult to estimate the comparative effectiveness of prehospital tourniquets and compression dressings. However, it seems unlikely that the entire reduction in mortality seen after implementation of routine initial application of tourniquets should be attributed to confounding factors. Furthermore, our experts with military experience noted that initial use of tourniquets also provides practical advantages over manual compression in battlefield settings, freeing up medics to tend to other injuries or individuals.

The overall strength of evidence for Key Question 1 was assessed using the GRADE system.<sup>40,41,60,61</sup> These evidence grades appear in Table 10. In the GRADE system observational studies begin with an initial grade of low which may then be modified based on other factors.

Based on particular study characteristics, this rating can then be adjusted either down (depending on study limitations, consistency, directness, precision, and publications bias) or up (based on magnitude of effect, dose response, confounders). All studies in the evidence base lacked comparison groups; consequently, we downgraded by one point for study limitations.<sup>61</sup> Directness refers to the applicability of the study population to the population of interest. The evidence base for this question consisted primarily of injured military personnel treated with tourniquets which may not predict the effectiveness in civilian populations and settings. We considered downgrading one point for indirectness, but decided against it given the similar results seen in the one study of civilians and the one study in children.<sup>60</sup> The evidence base for survival was upgraded by two points for a large magnitude of effect.<sup>62</sup> Eastridge et al. 2012 estimated a 7-fold improvement in survival based on their estimate of 23.5 deaths per year from peripheral extremity hemorrhage prior to routine use of tourniquets in the field (2001 to 2005) and 3.5 deaths per year after full implementation (after 2007).<sup>13</sup> Although it is likely that confounding factors account for some of this improvement, we decided that the likelihood that tourniquets account for a large portion of the improvement warranted a two-point upgrade. After making these adjustments, the evidence base for survival was rated Moderate and for amputations was rated Very Low.

| Outcome            | # Studies                                        | Type of       | Findings                                                      | Starting<br>GRADE | Decrease GRADE                          |             |            |           |                  | Increase GRADE                                                       |               |             | GRADE of                   |
|--------------------|--------------------------------------------------|---------------|---------------------------------------------------------------|-------------------|-----------------------------------------|-------------|------------|-----------|------------------|----------------------------------------------------------------------|---------------|-------------|----------------------------|
|                    | (Total N)                                        | Studies       |                                                               |                   | Study Limitations                       | Consistency | Directness | Precision | Publication Bias | Large Magnitude of Effect                                            | Dose-Response | Confounders | Evidence<br>for<br>Outcome |
| Survival rate      | 9 studies<br>of military<br>personnel<br>(1,229) | Observational | 91.9%<br>(95% confidence<br>interval [CI]:<br>88.1% to 94.6%) | Low               | -1<br>Absence of<br>comparison<br>group | 0           | 0          | 0         | 0                | +2<br>(7-fold<br>improvement<br>over<br>historical<br>military data) | 0             | 0           | Moderate                   |
| Amputation<br>rate | 6 (556)                                          | Observational | 19.2%<br>(95% CI: 15.8% to<br>23.2%)                          | Low               | -1<br>Absence of<br>comparison<br>group | 0           | 0          | 0         | 0                | 0                                                                    | 0             | 0           | Very Low                   |

 Table 10. Key Question 1: Strength of evidence grades for survival rate and amputation rate with prehospital tourniquet use

## Applicability

The studies that address Key Question 1 provide data primarily on the battlefield use of tourniquets for extremity hemorrhage. The outcomes reported in the military studies, primarily death and amputation, are likewise important in a civilian setting. The tourniquets used by the military have also been used in civilian settings, so applicability is not compromised by the types of devices used. However significant differences may exist with regard to the training of military versus EMS providers, the health of military versus civilian patients, and the nature of injuries sustained. Furthermore, because access to individual attention and hospital-based care is likely more rapid in civilian settings, the incremental benefits of pre-hospital tourniquet use over compression may be less than the benefits seen in a military context. In mass casualty events, as in combat situations, compression may be impractical, and the injured individual may need to self-apply a tourniquet. Under those circumstances, the available evidence may be more directly applicable.

Only a single study, Kalish et al.,<sup>50</sup> reported on the use of tourniquets in a civilian setting. The authors describe only 11 patients, all males with a mean age of 29 years and primarily with gunshot wounds. The evidence from the military's experience with gunshot wounds may be particularlyapplicable to civilian experience. However, military studies often do not separate results for gunshot wounds and explosive devices, potentially limiting extrapolation to civilian use.

In an analysis of the National Trauma Databank from 2002 to 2005, Kauvar et al. categorized lower limb injuries as due to penetrating (66%) or blunt trauma (34%). The patients ranged from 2 to 86 years of age with a mean age of 30.6 years (median of 27 years) with males accounting for 85% of the patients. Among 651 individuals with lower extremity arterial injury (common femoral, superficial femoral, popliteal and tibial) they calculated a mortality rate of 2.8% and amputation rate of 6.5%.<sup>4</sup> While these lower rates may reflect differences in the severity of injuries seen in civilian versus military settings, they may also reflect the fact that the data come from specialized trauma centers in the U.S.

A smaller study of patients dying from isolated extremity injuries at two hospitals in the Houston area was reported by Dorlac et al.<sup>5</sup> The 14 patients this study died from penetrating extremity injury primarily involving a major artery. The patients were 93% male, with an average age of 31 years, and in half the cases, had been injured by gunshot wounds. Eastridge et al.<sup>13</sup> reported that 22% of the fatalities from the wars in Iraq and Afghanistan were due to gunshot wounds and half of all fatalities (when excluding instantaneous deaths) occurred before the patient reached a medical treatment facility. Only 12.7% of casualties died after reaching a medical treatment facility. Soldiers treated with tourniquets were predominately males with an average age between 25 and 29 years.<sup>11,12,49,52,53</sup> Therefore, the evidence from military studies can be extrapolated to at least a subset of civilian patients (young males). Additional data on the benefits and harms of tourniquets in younger and older patients, especially those with peripheral vascular disease would be a valuable addition to the current evidence base.

# Key Question 2: Junctional Tourniquets Compared With External Pressure

Key Question 2: In trauma patients with junctional hemorrhage who are treated in the prehospital setting by EMS personnel, what is the effect of specialized junctional tourniquet use with or without external wound pressure on limb salvage, hypovolemic shock, survival, and

adverse effects compared with external pressure alone or with other nonjunctional tourniquet interventions?

# **Description of Included Studies**

We identified no clinical studies that addressed this question. The only studies of junctional tourniquets involved human volunteers and did not report outcomes considered in this report. The studies are described in the section on indirect evidence.

# Key Question 3: Tourniquets Compared With Other Tourniquets

Key Question 3: In trauma patients with extremity hemorrhage (excludes junctional hemorrhage) who are treated in the prehospital setting by EMS personnel, do different brands or models of tourniquets differ from each other in their effect on limb salvage, hypovolemic shock, survival, and adverse effects?

# **Description of Included Studies**

We identified no studies that addressed this question. We did identify studies comparing different types of tourniquets in healthy volunteers. Those studies are discussed later in the section on indirect evidence.

# Key Question 4: Junctional Tourniquets Compared With Other Junctional Tourniquets

Key Question 4: In trauma patients with junctional hemorrhage who are treated in the prehospital setting by EMS personnel, do different brands or models of specialized junctional tourniquets differ from each other in their effect on limb salvage, hypovolemic shock, survival, and adverse effects?

# **Description of Included Studies**

We identified no clinical studies that addressed this question. We did identify studies using anatomic pelvic simulation models to examine the Pelvic C-Clamp (two studies) and the Combat Ready Clamp (one study). These studies are described in the section on indirect evidence.

# Key Question 5: Tourniquets and Duration of Use

Key Question 5: In trauma patients with external hemorrhage (excludes junctional hemorrhage) who are treated in the prehospital setting by EMS personnel using a tourniquet—

- a. Does the incidence of adverse events vary by the duration of tourniquet use prior to removal?
- b. Does the incidence of adverse events vary depending on whether tourniquets are removed in the field versus in a facility?

We identified four studies that correlated duration of tourniquet use with adverse events: Beekley et al.,<sup>52</sup> Dayan et al.,<sup>58</sup> Kragh et al.,<sup>10</sup> and Lakstein et al.<sup>59</sup> These studies are mentioned under adverse events for Key Question 1. Adverse events were not reported according to timing or setting of tourniquet removal.

**Strength of Evidence** The overall strength of evidence for Key Question 5 was assessed using the GRADE system.<sup>40-42</sup> The results of the process appear in Table 11.

| Outcome                                                 | # Studies<br>(Total N) | Type of<br>Studies | Findings                                                  | Starting<br>GRADE | Decrease GRADE                                                                            |             |            |           |                  | Increase<br>GRADE         |               |             | GRADE of<br>Evidence |
|---------------------------------------------------------|------------------------|--------------------|-----------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------|-------------|------------|-----------|------------------|---------------------------|---------------|-------------|----------------------|
|                                                         |                        |                    |                                                           |                   | Study Limitations                                                                         | Consistency | Directness | Precision | Publication Bias | Large Magnitude of Effect | Dose-Response | Confounders | for<br>Outcome       |
| Nerve palsy,<br>fasciotomies,<br>and wound<br>infection | 11 (1,328)             | Observational      | The large majority<br>of adverse events<br>were temporary | Low               | -1 (lack of<br>comparison<br>groups, making<br>it difficult to<br>determine<br>causality) | 0           | 0          | 0         | 0                | 0                         | 0             | 0           | Very low             |

 Table 11. Key Question 5: Strength of evidence grades for adverse events with prehospital tourniquet use

# Key Question 6: Hemostatic Dressings Compared With External Pressure

Key Question 6: In trauma patients with external hemorrhage (hemorrhage from any body surface) who are treated in the prehospital setting by EMS personnel, what is the effect of hemostatic dressings with or without external wound pressure on limb salvage (if an extremity involved), hypovolemic shock, survival, and adverse effects compared with using non-hemostatic gauze with or without external wound pressure?

# **Description of Included Studies**

Our searches identified seven studies that examined the prehospital use of hemostatic dressings to control external hemorrhage (see Table 12). Five of the studies were conducted in a military setting. One study was in a civilian setting and one study gathered both military and civilian data. Only one study reported deaths as an outcome, and four studies reported the incidence of adverse events (see Table 13). Products examined in these studies included HemCon (3 studies), Celox (1 study), QuikClot granules (2 studies), and QuikClot Combat Gauze (1 study). One study did not collect information on which hemostatic dressings were used. Information on the data collection procedures is presented in Table 14.

| Reference                             | Setting                              | Registry or Hospital                                                                   | Period of Data<br>Collection                         |
|---------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|
| Brown et al. 2009 <sup>63</sup>       | U.S. civilian                        | Tualatin Valley Fire & Rescue,<br>Aloha, OR                                            | June 2006 to<br>Aug 2006                             |
| Cox et al. 2009 <sup>64</sup>         | U.S. military Iraq                   | U.S. military medical facilities<br>in Afghanistan                                     | April 2006 to<br>Oct 2006                            |
| Lairet et al. 2012 <sup>44</sup>      | U.S. military Afghanistan            | Level III combat support<br>hospital                                                   | Nov 2009 to<br>Nov 2011                              |
| Pozza and Millner, 2010 <sup>65</sup> | U.S. military Afghanistan            | U.S. Role 2 (Enhanced Care) facility                                                   | April 2008 to<br>October 2008                        |
| Ran et al. 2010 <sup>66</sup>         | Israel military                      | Israel Defense Force's Medical Corps                                                   | 2009                                                 |
| Rhee et al. 2008 <sup>67</sup>        | U.S. civilian and U.S. military Iraq | Summary of QuikClot uses<br>submitted to the authors by<br>military and civilian users | Not specified, but<br>study was completed<br>in 2006 |
| Wedmore et al. 2006 <sup>68</sup>     | U.S. military Iraq/Afghanistan       | None                                                                                   | 2003 to 2004                                         |

 Table 12. List of included studies of prehospital hemostatic dressing use

| Table 13. | Outcomes reported | d in studies of | prehospital l | nemostatic dressings |
|-----------|-------------------|-----------------|---------------|----------------------|
|           |                   |                 | p             |                      |

| Reference                          | Number of<br>Casualties Treated         | Patient Characteristics                                                                | Amputations | Survival | Shock | Adverse<br>Events |
|------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|-------------|----------|-------|-------------------|
| Brown et al.<br>2009 <sup>63</sup> | HemCon n=34                             | 53% extremity wounds,<br>68% male, mean age of<br>51.5 years, range of 16–91<br>years. |             |          |       | Х                 |
| Cox et al.<br>2009 <sup>64</sup>   | HemCon n=5,<br>QuikClot granules<br>n=3 | 7 of 8 extremity wounds, other data not reported                                       |             |          |       | х                 |

| Reference                               | Number of<br>Casualties Treated                                                                                                                                       | Patient Characteristics                                                                                                                                   | Amputations | Survival | Shock | Adverse<br>Events |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------|-------------------|
| Lairet et al.<br>2012 <sup>44</sup>     | Unspecified<br>hemostatic<br>dressings n=23,<br>Compression n=371                                                                                                     | For all 1,003 patients in the<br>study, the mechanism of<br>injury was explosion 60%,<br>penetrating 24%, blunt<br>15%. 97% male, mean age<br>of 25 years |             | x        |       |                   |
| Pozza and<br>Millner 2010 <sup>65</sup> | Celox = 21                                                                                                                                                            | All gunshot wounds. All male between ages of 18 and 45 years.                                                                                             |             |          |       | X                 |
| Ran et al.<br>2010 <sup>66</sup>        | QuikClot Combat<br>Gauze n=14                                                                                                                                         | Injuries: blast=7,<br>gunshot=6, stab=1. Other<br>data not reported.                                                                                      |             |          |       | X                 |
| Rhee et al.<br>2008 <sup>67</sup>       | QuikClot granules<br>n=103 (69 treated<br>by U.S. military<br>personnel, 20<br>treated by civilian<br>trauma surgeons, 14<br>treated by civilian<br>first responders) | Injuries for all patients:<br>explosion 21%, gunshot<br>66%, blunt 8%, stab wound<br>5%.                                                                  |             |          |       | x                 |
| Wedmore et al.<br>2006 <sup>68</sup>    | HemCon n=64                                                                                                                                                           | 55% extremity wounds;<br>bleeding was<br>predominantly from a<br>venous source in 33 cases,<br>arterial source in 7 cases,<br>and unknown in 24 cases.    |             |          |       | x                 |

| Table 13. | Outcomes re | ported in studies | of prehosp | ital hemostatic | dressings | (continued) |
|-----------|-------------|-------------------|------------|-----------------|-----------|-------------|
|-----------|-------------|-------------------|------------|-----------------|-----------|-------------|

| Table 14. | Data collection | process in studies of | prehospita | al hemostatic d | ressing use |
|-----------|-----------------|-----------------------|------------|-----------------|-------------|
|           |                 |                       |            |                 |             |

| Reference                          | Method of Data<br>Collection / Comments<br>About Data Collection                                                                                                                                                                      | Researcher<br>on Site | Medics or<br>Patients<br>Interviewed | Instructions for Dressing Use                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brown et al.<br>2009 <sup>63</sup> | Prospective                                                                                                                                                                                                                           | Yes                   | Yes                                  | "The initial approach to most external<br>hemorrhage (lacerations, abrasions,<br>puncture wounds) was application of<br>manual pressure with a gauze<br>bandage and elevation of the bleeding<br>area if possible. This is the approach<br>that is traditionally taught to EMS<br>providers and it was not altered for the<br>purpose of the study. If the gauze<br>bandage soaked through with blood, it<br>was to be removed and the HemCon<br>Bandage applied as directed." |
| Cox et al.<br>2009 <sup>64</sup>   | Retrospective<br>"Data collection in the<br>prehospital military<br>environment is notoriously<br>difficult, and in this series<br>the ongoing combat<br>operations posed severe<br>limitations to data<br>collection and follow-up." | No                    | No                                   | Tactical Combat Casualty Care<br>(TCCC)                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Reference                                  | Method of Data<br>Collection / Comments<br>About Data Collection                                                                                                                                                                                                                                                                                                                                                                                                                                   | Researcher<br>on Site | Medics or<br>Patients<br>Interviewed                                                                                                                                                                                    | Instructions for Dressing Use                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lairet et al.<br>2012 <sup>44</sup>        | Prospective<br>"The primary limitation is<br>that the study was a<br>convenience sample. This<br>was not a consecutive<br>enrollment study because<br>of the challenges of<br>performing this study in a<br>combat zone. Also, given<br>the lack of comprehensive<br>prehospital medical record<br>data for the Theater of<br>Operations, we cannot<br>confirm the true<br>denominator of our<br>population—those dying<br>before arrival at our study<br>facilities, or who were<br>transported." | No                    | No                                                                                                                                                                                                                      | TCCC                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pozza and<br>Millner<br>2010 <sup>65</sup> | Prospective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                   | Yes                                                                                                                                                                                                                     | Celox was used when hemostasis was<br>not achieved with compression using<br>standard pressure bandage. Celox<br>granules were applied with a syringe.<br>15 soldiers were also treated with<br>tourniquets. The tourniquets could be<br>removed after bleeding was controlled<br>with Celox.                                                                                                                 |
| Ran et al.<br>2010 <sup>66</sup>           | Prospective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                    | No                                                                                                                                                                                                                      | QuikClot Combat Gauze was used<br>after direct pressure to a central<br>wound or a tourniquet applied to an<br>extremity wound had failed to stop<br>bleeding.                                                                                                                                                                                                                                                |
| Rhee et al.<br>2008 <sup>67</sup>          | Prospective<br>Data were collected<br>through a survey or<br>through direct contact with<br>users.                                                                                                                                                                                                                                                                                                                                                                                                 | No                    | Yes                                                                                                                                                                                                                     | "The current instruction for use in the<br>combat battlefield is for external<br>source of hemorrhage that is life<br>threatening and uncontrolled by all<br>other means. After ineffectiveness of<br>these measures, Quik-Clot was to be<br>used."                                                                                                                                                           |
| Wedmore<br>et al. 2006 <sup>68</sup>       | Retrospective<br>Two U.S. Army emergency<br>physicians collected and<br>reviewed cases. Data were<br>collected and based on<br>verbal and written accounts<br>of HemCon dressing use.                                                                                                                                                                                                                                                                                                              | No                    | A survey was<br>sent to forward<br>deployed<br>medical<br>personnel who<br>initially<br>received<br>HemCon<br>dressings. The<br>survey asked if<br>the HemCon<br>dressing was<br>effective in<br>hemorrhage<br>control. | Providers were instructed to utilize the<br>dressings in cases in which other<br>standard techniques had failed or if<br>they thought there was a high<br>likelihood of failure with standard<br>techniques. 35 of 64 (55%) were<br>applied to wounds located on patient<br>extremities, 25 of 64 (39%) were<br>applied to wounds located on the<br>chest, groin, buttocks, and abdomen.<br>No cavity wounds. |

Table 14. Data collection process in studies of prehospital hemostatic dressing use (continued)

# **Key Points**

- No studies identified for this report provided a direct comparison of hemostatic dressings with or without external wound pressure to non-hemostatic gauze with or without external wound pressure for the prehospital treatment of trauma patients with extremity hemorrhage.
- Only one study, Lairet et al.,<sup>44</sup> reported on survival in patients treated with hemostatic dressings (Table 15). While the study reported that hemostatic dressings were life-saving, it did not specify what dressings were used.
- The primary outcome reported in five studies was the ability of the hemostatic dressings to stop bleeding.
- Most studies reported no complications or adverse events (Table 16). However, QuikClot granules were associated with pain and discomfort from the exothermic reaction.

The study by Brown et al.<sup>63</sup> reported that HemCon controlled external hemorrhage in 27 of 34 cases (79%); in 25 cases the bleeding stopped within 3 minutes of application.

The study by Cox et al.<sup>64</sup> was confounded because seven of the eight patients treated with hemostatic dressings in the field were also treated with a tourniquet.

The study by Pozza and Millner<sup>65</sup> reported that Celox stopped bleeding in 18 gunshot wounds when first applied and in 3 additional cases with further application.

The study by Ran et al.<sup>66</sup> reported that QuikClot Combat Gauze successfully stopped bleeding in 11 out of 14 cases of extremity and truncal hemorrhage.

The study by Rhee et al.<sup>67</sup> reported that QuikClot granules were 100% effective in stopping bleeding.

In the study by Wedmore et al.,<sup>68</sup> medics were surveyed on their use of HemCon dressing. In 42 of the 64 cases, the dressings were used when traditional gauze dressings or pressure dressings failed to stop bleeding. In 62 of the 64 cases, HemCon successfully stopped the bleeding.

| Reference                        | Number of<br>Casualties<br>Treated                              | Deaths                                                                                                                                                                                                        |
|----------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lairet et al. 2012 <sup>44</sup> | Hemostatic<br>dressing n=23<br>Non-hemostatic<br>dressing n=371 | A treating physician reported that the hemostatic dressing was lifesaving in 13 of 23 casualties (survival rate of 57%). Similar data were not reported for casualties treated with non-hemostatic dressings. |

Table 15. Study of prehospital hemostatic dressing use reporting survival

| Table 16. | Studies of prehospital | hemostatic dressing use | e reporting adverse events |
|-----------|------------------------|-------------------------|----------------------------|
|-----------|------------------------|-------------------------|----------------------------|

| Reference                            | Number of<br>Casualties<br>Treated      | Adverse Events                                                                                                                                                                     |
|--------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brown et al. 2009 <sup>63</sup>      | HemCon n=34                             | No complications or adverse events were reported.                                                                                                                                  |
| Cox et al. 2009 <sup>64</sup>        | HemCon n=5,<br>QuikClot<br>granules n=3 | Among all patients treated prehospital and in-hospital, 2 of the 4 patients treated with QuikClot had burns from exothermic reactions. No adverse reactions were noted for HemCon. |
| Pozza and Millner 2010 <sup>65</sup> | Celox = 21                              | No pain or changes to the surrounding tissue were reported.                                                                                                                        |

 Table 16. Studies of prehospital hemostatic dressing use reporting adverse events (continued)

| Reference                         | Number of<br>Casualties<br>Treated | Adverse Events                                                                                                                                                                                                                                                   |
|-----------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ran et al. 2010 <sup>66</sup>     | QuikClot<br>Combat Gauze<br>n=14   | No complications or adverse events were reported.                                                                                                                                                                                                                |
| Rhee et al. 2008 <sup>67</sup>    | QuikClot<br>granules n=52          | Field medics and corpsmen reported that about 25% of their uses resulted in concomitant mild to severe pain and discomfort due to the exothermic reaction from QuikClot granules. None of the medics or corpsmen thought that QuikClot caused additional injury. |
| Wedmore et al. 2006 <sup>68</sup> | HemCon n=64                        | No adverse effects or complications were noted in the answer to the survey.                                                                                                                                                                                      |

## Strength of Evidence

The risk of bias associated with these studies is high because they are all single-arm studies with no comparison group. Sufficient data were not available to provide an estimate of survival rates or amputation rates in patients treated with hemostatic dressings. The overall strength of evidence for Key Question 6 was assessed using the GRADE system.<sup>40-42</sup> The results are reported in Table 17. Because all studies lacked comparison groups, we downgraded by one point for study limitations<sup>61</sup> and assessed the strength of the evidence as Very Low.

| Outcome           | ne # Studies Type of Findings<br>(Total N) Studies |               |                                                                                               | Starting<br>GRADE | Decrease GRADE                                            |             |            |           |                  |                           | Increase<br>GRADE | GRADE of<br>Evidence |                |
|-------------------|----------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------|-------------|------------|-----------|------------------|---------------------------|-------------------|----------------------|----------------|
|                   |                                                    |               |                                                                                               |                   | Study Limitations                                         | Consistency | Directness | Precision | Publication Bias | Large Magnitude of Effect | Dose-response     | Confounders          | for<br>Outcome |
| Survival<br>rates | 1 (23)                                             | Observational | 13 survivors (57%)                                                                            | Low               | -1<br>(incomplete<br>reporting on<br>comparison<br>group) | 0           | 0          | 0         | 0                | 0                         | 0                 | 0                    | Very Low       |
| Amputation rates  | 0                                                  | 0             | _                                                                                             | —                 | —                                                         |             |            |           |                  |                           |                   |                      | _              |
| Adverse<br>events | 6 (179)                                            | Observational | QuikClot granules were associated with burns and pain. No other adverse events were reported. | Low               | -1 (lack of comparison group)                             | 0           | 0          | 0         | 0                | 0                         | 0                 | 0                    | Very Low       |

 Table 17.
 Key Question 6: Strength of evidence grades for survival and amputations with prehospital hemostatic dressing use

## Applicability

The studies that address Key Question 6, like those for Key Question 1, provide data primarily on the battlefield use of hemostatic dressings. The applicability of these military studies to civilian needs may be tempered by the difference in settings. The primary outcome reported was bleeding control, which is likewise important in the civilian setting. Also, the particular hemostatic dressings used by the military are also available for civilian use; in these ways, the applicability of results from these military studies to the civilian context appears high.

The military's experience with hemostatic dressings may be most generalizable to the civilian context when the injuries are caused by gunshot wounds. However, many studies did not report separate outcomes for different mechanisms of injury. Notably, one study performed in civilians by Brown et al.<sup>63</sup> examined 34 patients, primarily male, with a wide range of ages (16–91 years). This study was unique in reporting individual patient data, allowing for better extrapolation to variable civilian settings and mechanisms of injuries.

# Key Question 7: Hemostatic Dressings Compared With Other Hemostatic Dressings

Key Question 7: In trauma patients with external hemorrhage (hemorrhage from any body surface) who are treated in the prehospital setting by EMS personnel, do different brands or types of hemostatic dressings differ from each other in their effect on limb salvage (if an extremity involved), hypovolemic shock, survival, and adverse effects?

## **Description of Included Studies**

Our searches identified no studies that directly compared hemostatic dressings for prehospital control of external hemorrhage. We did identify animal studies in which different dressing types were compared; these are described in the section on indirect evidence.

# **Ongoing Clinical Trials**

Our search of ClinicalTrials.gov identified no ongoing or planned clinical trials involving prehospital use of tourniquets or hemostatic dressings.

# Indirect Evidence: Animal Model Studies

The U.S. Military has made extensive use of animal models, especially the swine hemorrhage model, to test the effectiveness of hemostatic dressings to control severe extremity bleeding.<sup>33</sup> The first studies were performed by Alam and coworkers to identify an agent for immediate use by the U.S. Military and published in 2003 and 2004.<sup>69,70</sup> The model had to be clinically relevant to the types of traumatic lethal extremity hemorrhage that occurred in combat in Iraq and Afghanistan and provide a sufficiently rigorous test of hemostasis and survival. Alam et al. used a complex groin injury in swine involving complete division of the femoral artery and vein and free bleeding for 3 or 5 minutes before the test dressings were applied. Both studies compared QuikClot granules and TraumaDex with standard gauze; one study also examined HemCon and Fast Act. Both experiments concluded that QuikClot granules demonstrated the best hemorrhage control and mortality reduction in this model.

Since these original studies were published, several different approaches have been used in the swine hemorrhage model to test hemostatic dressings. Differences in whether or not the spleen was removed, how the injury was induced, the amount of free bleeding time, how the dressings were applied, whether or not fluid replacement was used, and the length of time and amount of manual pressure to be applied have been reported in various studies.<sup>33</sup> Because these differences make cross-study comparisons difficult, the U.S. Army Institute of Surgical Research (ISR) proposed a standard swine hemorrhage model in 2011.<sup>33</sup> This model uses Yorkshire crossbred, castrated male pigs weighing 34 kg to 44 kg, a 6 mm punch hole in the femoral artery to produce severe bleeding, 45 seconds of free bleeding, a single use of QuikClot Combat Gauze as a comparison dressing, and 3 minutes of manual compression. The animals are observed for 150 minutes from time of injury. Surgeons are blinded to the test dressing and dressing application should be according to manufacturer's instructions. Using this model, the hemostasis rate (defined as cessation of bleeding during an observation period after release of manual compression) and survival rate are 33% when using QuikClot Combat Gauze. Table 18 provides a summary of the recommended steps for the surgical procedures, wound treatment, and resuscitation steps in the severe hemorrhage swine model proposed by ISR.

#### Table 18. U.S. Army Institute of Surgical Research Recommendations for Surgical Procedures, Wound Treatment, and Resuscitation for Severe Extremity Hemorrhage Swine Model<sup>33</sup>

#### **Surgical Procedures**

- 1. Animal is induced with an injection of tiletamine-zolazepam or ketamine and anesthetized with isoflurane in oxygen via a face mask.
- 2. Cannulate the right carotid artery for blood withdrawal and to measure blood pressure.
- 3. Catheterize the right jugular vein for fluid administration.
- 4. Grossly examine internal organs through a midline laparotomy, perform a cystostomy, and place a Foley catheter for urine collection then close the abdomen.
- 5. Make a 10 cm incision in the groin area parallel and close to the femoral artery. Expose the artery and dissect 5 cm free from the surrounding tissue. Avoid damage to the femoral nerve and vein.
- 6. If measuring wound temperature when testing dressings with potential exothermic properties suture a microelectrode to the adjacent muscle at least 1 inch away from the artery.
- 7. Bathe the artery with a few milliliters of 2% lidocaine to prevent vasospasm and to dilate the artery to its normal diameter.
- 8. Discontinue fluid maintenance and allow a 5–10 minute stabilization period to establish a mean arterial blood pressure (MAP) of 60 mm Hg or higher.
- 9. Collect preinjury/baseline blood samples.
- 10. Clamp the artery proximally and distally. Make a 6 mm-diameter arteriotomy on the anterior surface of the vessel using a 6 mm vascular punch.
- 11. Release the clamps and allow free bleeding for 45 seconds. Collect shed blood by suction; weigh and record as pretreatment blood loss.

#### Wound Treatment

- 1. During bleeding, open the test dressing package and apply when the free bleeding period has ended. The application should be complete in 1 minute.
- 2. Cover the dressing material with a folded laparotomy sponge or equivalent gauze and manually press for 3 minutes with sufficient pressure to occlude the artery and stop bleeding.
- 3. Pull the skin flaps over the sponge or gauze without clamping or applying additional pressure.
- 4. After the 3 minutes of manual compression slowly remove the pressure and observe bleeding for 3 minutes without disturbing the dressing. If no bleeding occurs during this period then initial hemostasis has been achieved.
- 5. If bleeding occurs after compression release or at any time during the observation period collect the shed blood by suction and weigh. Record the time when bleeding stops.

#### Resuscitation

- 1. Start fluid resuscitation after the 3 minute manual compression is completed. Infuse 500 mL of Hextend via the jugular vein at 33 mL/minute for about 15 minutes to raise and maintain MAP (mean arterial pressure) at 60 to 65 mmHg. Maintain MAP with infusion of lactated Ringers solution to a maximum of 10 L.
- 2. Observe the animal for 150 minutes or until death (MAP under 15 mm Hg and end tidal Pco<sub>2</sub> under 10 mm Hg for at least 2 minutes)
- 3. If available, use computed tomography to scan surviving animals for images of arterial blood flow.
- 4. Flex and stretch the treated leg 5 times to simulate walking to test the stability of the hemostasis.
- 5. Remove the hemostatic dressing and observe the clot.
- 6. Euthanize the animal with an intravenous injection of euthanasia solution.
- 7. Collect tissue samples for histology. Tissue examination should be blinded to treatment.

## **Key Points**

• The severe extremity hemorrhage swine model has been used to test the hemostatic and survival properties of numerous hemostatic dressings but the studies are inconsistent in the duration of free bleeding time and manual compression, timing of fluid resuscitation and maintenance of blood pressure, length of observation period for assessing hemostasis and survival, and use of standard gauze dressing.

- QuikClot Combat Gauze, Celox, and HemCon were the most studied hemostatic dressings in the animal model studies.
- Analysis of 30- to 45-second free-bleeding studies of QuikClot Combat Gauze, Celox, and HemCon hemostatic dressing indicated that none of these dressings were significantly superior to standard gauze for survival rate.
- Given the wide variation in definitions and inconsistency of the hemostasis rates seen across studies, the animal model evidence base does not provide a reliable assessment of how these dressing might perform in clinical situations involving peripheral hemorrhage.

### **Selection of Animal Studies**

Animal studies were identified in the original searches for this evidence report as described in Appendix A. We included only studies comparing FDA-cleared or approved hemostatic dressings with standard gauze or another cleared or approved hemostatic dressing in a swine or goat model of extremity bleeding. We excluded liver or other internal organ injury models.

Our searches identified 61 publications of potentially relevant animal model studies. Twentytwo were excluded for various reasons (see Table B-3 in Appendix B). The 38 included animal model studies were organized into four tables (in Appendix C) according to the duration of free bleeding time: 5 seconds or less (4 studies), 30 to 45 seconds (19 studies), 1 to 2 minutes (11 studies), and 3 or more minutes (5 studies). A single study examined the use of a locally applied clamp.<sup>35</sup> The animal model used was a pig unless noted in the table under the methods columns.

Most studies evaluated more than one type of hemostatic dressing, randomly allocated dressings to each animal, and blinded the person applying the dressings to the type of dressing. Two products that are no longer recommended for use by the military, QuikClot granules and WoundStat, were used as comparators in several studies of products that are still in current use.

### Description of studies using 30-45 seconds of free bleeding time

QuikClot Combat Gauze, Celox, and HemCon were the most studied hemostatic dressings in the animal model studies. Hemostasis rates were reported in the majority of studies, but the protocols for determining hemostasis varied widely (e.g., whether compression was applied and if so, for how long; timing of fluid resuscitation; duration of observation for hemostasis).

Data on hemostasis and survival after 30 or 45 seconds of free bleeding (as recommended by the ISR) were selected from studies of these dressings for further analysis.

QuikClot Combat Gauze was examined in three studies;<sup>71-73</sup> in one of these it was compared to standard gauze.<sup>73</sup> Hemostasis rates were 30% in two studies<sup>71,73</sup> and 57% in one study.<sup>72</sup> (One form of Combat Gause, QuikClot Combat Gauze XL, had a hemostasis rate of 80%.<sup>71</sup> Survival rates ranged from 60% to 100%.

HemCon was examined in 9 studies that reported data on hemostasis,<sup>71-79</sup> and in an additional study that reported survival only.<sup>80</sup> Both the hemostasis rates and survival rates varied across studies despite using the same animal model. Six of the studies reported a hemostasis rate less than 50%,<sup>73,75-79</sup> and three of the studies reported a hemostasis rate greater than 50%,<sup>71,72,74</sup> The same was true for the survival rates. Five studies reported survival rates less than 50%,<sup>71,72,76,77,80</sup> reported rates greater than 50%. HemCon was compared to other hemostatic dressings and to standard gauze in six studies.<sup>73,75-77,79,80</sup> Comparators included QuikClot Combat Gauze in three studies.<sup>71-73</sup>

Five studies examined Celox.<sup>71,73-75,80</sup> Three studies included a comparison to standard gauze,<sup>73,75,80</sup> three included HemCon as a comparator<sup>71,74,80</sup> and two included QuikClot Combat

Gauze as a comparator.<sup>71,73</sup> Hemostasis rates and survival rates were inconsistent across studies for all comparisons.

Neither QuikClot Combat Gauze, Celox, nor HemCon was significantly superior to standard gauze for survival. Tables of these studies are provided in Appendix C.

### Strength of Evidence

For the purposes of determining the strength of evidence only the 11 studies of QuikClot Combat Gauze, HemCon, and Colex comparing these dressings to standard gauze and reported survival data were assessed. In the GRADE system randomized controlled studies start with an initial high quality of evidence grade which may then be modified based on factors than can lead to rating the quality of evidence down (study limitations, consistency, directness, precision, and publications bias) or up (magnitude of effect, dose response, confounders). We downgraded by 2 points for indirectness of the study populations (pigs vs. humans). In addition, we downgraded the animal studies by one point for publication bias, given that negative animal studies are even more unlikely to be submitted for publication or to be published if they are submitted.<sup>81</sup> We also downgraded the evidence comparing Celox gauze to standard nonhemostatic gauze for significant inconsistency. The evidence could also be downgraded for imprecision, given the small size of the studies and the width of the confidence intervals. The overall strength of evidence for each comparison for the outcome of survival was assessed as Very Low using the GRADE system.<sup>40,41,60,61</sup>

| Outcome                                                     | # Studies            | Type of                           | Findings                                                  | Starting |                   | Decre       | ase G      | RADE      |                  | Incre                     | ase GF        | GRADE of    |                            |
|-------------------------------------------------------------|----------------------|-----------------------------------|-----------------------------------------------------------|----------|-------------------|-------------|------------|-----------|------------------|---------------------------|---------------|-------------|----------------------------|
|                                                             | (Total N)            | Studies                           |                                                           | GRADE    | Study limitations | Consistency | Directness | Precision | Publication Bias | Large Magnitude of Effect | Dose-response | Confounders | Evidence<br>for<br>Outcome |
| Survival: QuikClot<br>Combat Gauze<br>vs. standard<br>gauze | 1 study<br>(n=16)    | Randomized<br>controlled<br>study | Odds ratio: 8.0<br>(95% Cl of 0.80 to 79.7,<br>p=0.08)    | High     | 0                 | 0           | -2         | 0         | -1               | 0                         | 0             | 0           | Very Low                   |
| Survival: HemCon<br>vs. standard<br>gauze                   | 7 studies<br>(n=115) | Randomized controlled study       | Odds ratio: 0.86<br>(95% Cl of 0.16 to 4.67,<br>p=0.86)   | High     | 0                 | 0           | -2         | 0         | -1               | 0                         | 0             | 0           | Very Low                   |
| Survival: Celox<br>vs. standard<br>gauze                    | 3 studies<br>(n=40)  | Randomized<br>controlled<br>study | Odds ratio: 6.98<br>(95% Cl of 0.16 to 310.96,<br>p=0.32) | High     | 0                 | -1          | -2         | 0         | -1               | 0                         | 0             | 0           | Very Low                   |

 Table 19. Strength of evidence – Animal studies using recommended free bleeding time (30-45 seconds) in comparison to standard gauze

## Description of studies using shorter or longer free-bleeding times

#### Studies using 5 seconds or less free bleeding time

The studies using this short duration of free bleeding time are described in a table and additional text in Appendix C. Of note, Satterly et al.<sup>82</sup> reported that hemostasis rates were 20% higher when applied by military personnel compared with nonmedical personnel; this increase was statistically significant. Military personnel also rated QuikClot Combat Gauze easier to use than HemCon.

The other study using trained military personnel examined various versions of HemCon and reported the best results with the double-sided bandage; hemostasis with this dressing was 76% at 4 minutes and was significantly better than standard gauze.<sup>83</sup> Military personnel preferred the double-sided HemCon bandage over the one-sided dressing and the powder form.

Wright et al.<sup>84</sup> specifically looked at tissue damage and wound healing when using QuikClot granules. Extensive tissue burns, necrosis, and impaired wound healing were noted in animals treated with QuikClot granules.

#### Studies using 1 or 2 minutes of free bleeding time

QuikClot Combat Gauze was examined in three studies with good results for hemostasis and survival.<sup>85-87</sup> Two of these studies, examining differing outcomes, reported that Combat Gauze was significantly better than standard gauze:

- Gegel et al.<sup>85</sup> reported that QuikClot Combat Gauze was significantly better than standard gauze at controlling blood loss and preventing further bleeding when the limb was vigorously moved.
- Causey et al.<sup>86</sup> reported that hemostasis using QuikClot Combat Gauze was significantly better than standard gauze when used in conditions of severe acidosis and coagulopathy.

Studies comparing hemostatic dressings did not find significant differences. All of the studies are described in additional text and a table in Appendix C.

#### Studies using 3 or more minutes of free bleeding

QuikClot granules and QuikClot ACS ("bagged QuikClot) were compared to various hemostatic agents and standard gauze in all five studies using 3 or more minutes of free bleeding.<sup>69,70,88-90</sup> In these studies of severe bleeding, QuikClot was effective at promoting hemostasis and survival. However, these QuikClot products significantly raised wound temperature. All of the studies are described in additional text and a table in Appendix C.

# **Indirect Evidence: Volunteer and Simulation Studies**

The U.S. Military has also made extensive use of volunteer and simulation studies to test the effectiveness, reliability, and ease of use of tourniquets and abdominal clamps. These studies typically examine the ability of the tourniquet to halt blood flow to the extremities of volunteers (usually measured by Doppler ultrasound) and how much training is necessary to easily place and operate the devices. The abdominal clamps are used on specially designed pelvic models to provide training and test ease of use. Our searches identified nine studies using human volunteers to test the following devices: the Combat Application Tourniquet (CAT) (4 studies), the Emergency and Military Tourniquet (EMT) (3 studies), the Stretch, Wrap, and Tuck Tourniquet (2 studies), the Self Applied Tourniquet System (2 studies), the One-Handed Tourniquet (2 studies), the Abdominal Aortic Tourniquet (1 study), the Mechanical Advantage Tourniquet (one study), the Special Operations Forces Tactical Tourniquet (1 study), the Last Resort Tourniquet (1study), the London Bridge Tourniquet (1 study), and the K2 Tactical Tourniquet (1 study). Of the nine volunteer studies, three compared different non-commercial and commercial tourniquets (bladder tourniquet, windlass tourniquet, cargo-strap tourniquet, rubber tube, and improvised tourniquet). Three studies used anatomic pelvic simulation models to examine the Pelvic C-Clamp (2 studies) and the Combat Ready Clamp (1 study).

# **Key Points**

- The Combat Application Tourniquet was reported to be better than 90% successful in occluding blood flow when self-applied to the leg in three studies. However, a fourth study reported only a 17% success rate when self-applied at mid-thigh and only a 8.3% success rate when the tourniquet was applied by a member of the research team.
- The Emergency and Military Tourniquet was reported to successfully occlude leg blood flow in three studies.
- Rubber and latex tubing were also reported to successfully occlude leg blood flow in three studies. Rubber and latex tubing had higher pain scores than other tourniquets.
- Tourniquets exposed to harsh environments for extended periods were less effective than new tourniquets in occluding blood flow and were more likely to break when used.
- Abdominal clamps were all examined in simulation models.
  - Occlusion of simulation bleeding was 100% reported in one study.
  - Special training is necessary for proper use of abdominal clamps.

## **Results of Volunteer and Simulation Studies**

Evidence tables for the volunteer and simulation studies are provided in Appendix C. The CAT was tested in four studies. Wall et al. 2013<sup>91</sup> compared the CAT to the Stretch, Wrap, and Tuck Tourniquet (SWAT-T). Both were easy to use and produced occlusion at both the thigh (94% success) and forearm (100% success), but the CAT produced significantly more discomfort. Childers et al. 2011<sup>92</sup> reported that new CATs (not exposed to harsh environments) produced leg occlusion in 91% of applications compared to 63% of tourniquets previously exposed to the Afghanistan environment. Taylor et al. 2011<sup>93</sup> compared the CAT to the EMT when applied at mid-thigh. The CAT was successful at occluding the popliteal artery in only 16.6% of self-applications, and in only 8.3% when applied by a member of the research team. The EMT, which is not designed for self-application, and which was applied by a trained

researcher, produced occlusion in 75%. Walters et al.  $2005^{28}$  reported 100% occlusion when the CAT was applied to the leg and to the arm.

The EMT, a pneumatic device, was examined in three studies. As mentioned above, Taylor et al. 2011<sup>93</sup> reported 75% occlusion success when applied at mid-thigh by a trained researcher. King et al. 2006<sup>94</sup> reported 80% success when applied to the leg and Walters et al. 2005<sup>28</sup> reported 100% success for the leg and arm.

The SWAT-T was examined in two studies. As mentioned above, Wall et al. 2013<sup>91</sup> reported 94% and 100% occlusion success in the leg and thigh, respectively. Wall et al. 2012<sup>95</sup> examined just the SWAT-T and reported that the device successfully produced occlusion in 64% of applications when minimal training was provided.

The Self Applied Tourniquet System was examined in two studies. King et al. 2006<sup>94</sup> reported less than 50% success with leg occlusion and Walters et al. 2005<sup>28</sup> reported less than 80% success for leg occlusion. These results were not considered effective enough to recommend the device.

The One-Handed Tourniquet was examined in two studies. King et al.  $2006^{94}$  reported that this device did not work in any attempt at leg occlusion and Walters et al.  $2005^{28}$  reported less than 80% success for thigh occlusion. These results were not considered effective enough to recommend the device.

Basic tubing was examined in three studies. Guo et al. 2011<sup>96</sup> reported that leg occlusion success with rubber tubing was 60% and Swan et al. 2009<sup>97</sup> reported a 90% success. King et al. 2006<sup>94</sup> reported that latex surgical tubing was 90% successful for leg occlusion. While all three studies reported success with tubing they also all reported that tubing was the most painful.

Abdominal clamps (Pelvic C-Clamp and Combat Ready Clamp) were tested using pelvic models and simulated bleeding with the primary purpose of determining the proper training methods for use of these devices. Only the study using the Combat Ready Clamp tested occlusion using a specially designed manikin that simulated bleeding. Each study concluded that with proper training these devices could be successfully set up and used.

# 4. Discussion

# Key Findings and Strength of Evidence

Our searches identified 16 studies that examined prehospital tourniquet use for traumainduced extremity hemorrhage that reported outcomes selected for this report.

- No studies identified for this report provide a direct comparison of tourniquets to compression for treating trauma patients with extremity hemorrhage. In the military setting, tourniquets are considered an appropriate first response to traumatic extremity hemorrhage.
- Based on 13 studies reporting survival data for casualties treated with tourniquets, prehospital tourniquets are an effective treatment method for the prevention of death due to exsanguination. The reported survival rates for casualties treated with prehospital tourniquets ranged from 87% to 100%. Based on a meta-analysis of nine studies in military settings reporting adequate data, the survival rate for casualties treated with prehospital tourniquets is 91.9% with 95% confidence intervals of 88.1% to 94.6%. The strength of evidence was graded Moderate for improvement in survival.
- Based on eight studies reporting amputation data for casualties treated with tourniquets, prehospital tourniquets appear to be effective for preventing amputation. The reported amputation rates for casualties treated with prehospital tourniquets ranged from 13% to 28%. Based on a meta-analysis of 6 studies in military settings, the amputation rate for surviving casualties treated with prehospital tourniquets is 19.2% with 95% confidence intervals of 15.8% to 23.2%. The strength of evidence for improvement in amputation rates was graded Very Low.
- Insufficient evidence was available to examine the influence of prehospital tourniquet use on hypovolemic shock.
- Based on 11 studies reporting adverse-event data for casualties treated with tourniquets, prehospital tourniquets are associated with temporary nerve palsy, fasciotomies, and wound infection.

Our searches identified seven studies that examined the prehospital use of hemostatic dressings to control external hemorrhage. Only one study reported on survival associated with hemostatic dressing use.

- No studies identified for this report provide a direct comparison of hemostatic dressings and compression for the prehospital treatment of trauma patients with extremity hemorrhage.
- A single study reported that survival was improved but did not report adequate data for assessing the strength of evidence for this outcome.
- Indirect evidence from animal studies using 30 to 45 second free-bleeding time indicated that QuikClot Combat Gauze, Celox, and HemCon hemostatic dressings were not superior to standard gauze for survival rate. Hemostasis rates seen in these studies varied significantly. Consequently, the animal model evidence base does not provide a reliable assessment of how these dressing would perform in clinical situations involving external hemorrhage.

### Findings in Relationship to What is Already Known

A systematic review and guideline from the Eastern Association for the Surgery of Trauma on management of penetrating lower extremity arterial trauma was published in 2012.<sup>98</sup> The guideline made the following recommendation:

In cases of hemorrhage from penetrating lower extremity trauma in which manual compression is unsuccessful, tourniquets may be used as a temporary adjunct for hemorrhage control until definitive repair.

The authors stated that the recommendation is generally supported by data from studies based on retrospective data collection. The studies on tourniquet use examined in the guideline are the same studies identified for our report. The guideline states that "The initial approach to an arterial injury should be manual compression or a compression dressing, and the primary indication for tourniquet use should be the failure of direct pressure to control hemorrhage from an extremity vascular injury. Tourniquet time should be limited and tourniquets should be removed when definitive care is available. When correctly used, the complication rate from tourniquet use is exceedingly low." Hemostatic dressings were not considered in the guideline.

Another guideline on managing bleeding after major trauma was published by the Task Force for Advanced Bleeding Care in Trauma in 2010.<sup>99</sup> The guideline recommends "adjunct tourniquet use to stop life-threatening bleeding from open extremity injuries in the pre-surgical setting." The recommendation was "Grade 1C" in the GRADE system: strong recommendation, low-quality or very low-quality evidence, but with benefits clearly outweighing risk and burdens. The recommendation was based on the same studies examined in our report. The guideline states that "When uncontrolled arterial bleeding occurs from mangled extremity injuries, including penetrating or blast injuries or traumatic amputations, a tourniquet represents a simple and efficient method to acutely control hemorrhage."

Our searches identified two systematic reviews of prehospital hemostatic dressing use. They also identified the same studies identified in our report. Smith et al.<sup>32</sup> noted that "Anecdotal reports strongly support the use of hemostatic dressings when bleeding cannot be controlled using pressure dressings alone; however, current research focuses on studies conducted using animal models. There is a paucity of published clinical literature that provides an evidence base for the use of one type of hemostatic dressing over another in humans." Granville-Chapman et al.<sup>100</sup> also note that the clinical data for hemostatic dressings are scant and come from retrospective observational studies and that the available comparison data come from animal models. These authors supported the use of QuikClot granules and QuikClot ACS, in addition to HemCon as the current standard in 2010, basing their opinion on animal studies along with the sparse clinical data. The authors thought that other newer hemostatic dressings, such as QuikClot Combat Gauze and Celox, would eventually replace these two dressings.

# **Applicability**

The data collected in the studies identified for this evidence report are partially applicable to the population of interest for this report. The available evidence for civilian use is small compared to that for military use. A recent study examined barriers to implementation of battlefield trauma care into the care of civilians with traumatic injuries.<sup>101</sup> The authors surveyed directors of the 31 local EMS agencies in California regarding the use of tourniquets, hemostatic dressings and TCCC principles in their regions. Of the 14 directors who responded, eight (57%) reported use of tourniquets, and only one reported use of hemostatic dressings. Reasons cited for not using tourniquets were (1) the difference in injuries encountered in civilian and military

settings, (2) perceived lack of effectiveness, and (3) concern about adverse effects. Reasons for not using hemostatic agents were (1) perceived lack of proven effectiveness, (2) concerns about adverse effects, and (3) expense.<sup>101</sup>

The military experience with gunshot wounds and other trauma not related to explosives may be the most relevant to the civilian setting, but studies did not typically provide data on effectiveness for injury mechanism subgroups. While civilians injured by gunshot wounds are often similar in age and sex to the military populations, it would be helpful to have more information about the performance of tourniquets in children and the elderly, particularly those with vascular comorbidities.

The types of tourniquets and dressings currently used by the military are available for use in civilian prehospital settings. However, the training in combat casualty care is heavily emphasized in the military, so proper application of these interventions in the civilian setting would require equally rigorous training.

# Limitations of the Evidence Base

Emergency trauma situations are not readily amenable to rigorous randomized comparison trials. Butler and Carmona have noted "there is no ability to rely on carefully performed randomized, controlled trials to provide definitive answers to the medical decisions required in battlefield trauma care."<sup>9</sup> Elster et al. made the same point when discussing the implications of combat casualty care for mass casualty events.<sup>18</sup> They noted that "few military clinical practice guidelines are the result of standard, randomized clinical trials." Instead a "pragmatic approach adopted for military combat casualty care has allowed for rapid adoption of life saving strategies through practical methods. In this context, the evidence base supporting the military's clinical practice guidelines is driven by the results of basic science, translational large animal research, and retrospective cohort analyses."

Reviewing the evidence collected for this evidence report, we have been mindful of this problem and have attempted to adopt a "best available evidence" approach to addressing the report's key questions. However, most of the key questions proposed for this report could not be addressed with the available evidence. We identified no direct comparisons of compression to either tourniquets or hemostatic dressings. The main purpose of many studies was not to collect data on outcomes related to tourniquet or hemostatic dressing use, but instead to document the use of these interventions in a variety of settings. Other than a single report from the war zones in Iraq and Afghanistan that provided data on tourniquet use in pediatric casualties, we have no data on pediatric or elderly populations.

We have provided data from animal studies on hemostatic dressings and from human volunteer studies on tourniquets as indirect evidence regarding some of the questions addressed in this report. However, we caution against extrapolating from this data for anything aside from hypothesis generation.

# **Research Gaps**

Data on outcomes related to civilian use of tourniquets and hemostatic dressings are extremely limited. This deficiency has already been noted in several reviews.<sup>32,100</sup> We identified two studies that collected information on hemostatic dressing use, but few relevant outcomes were reported in these studies. If tourniquets and hemostatic dressings are implemented widely in the civilian sector, it would be valuable to enhance the data collection for the National Trauma Databank to capture specific information about their use and outcomes. Information on the

demographics and health of patients treated, the mechanisms of injury, the types of interventions employed, the difficulty or ease of use, the control of hemorrhage, complications, limb salvage and patient survival would be extremely helpful for assessing the effectiveness and safety of these approaches. Information on the extent of training of those applying the tourniquets or dressings would also be important for interpreting the findings.

# Conclusions

The military's experience treating trauma-related external hemorrhage before and after widespread use of tourniquets during the wars in Iraq and Afghanistan strongly suggests that tourniquet use saves lives. The adverse side effects associated with tourniquets appear to be manageable and do not appear to outweigh the benefits of tourniquet use. Proper training in tourniquet use, as highlighted in the TCCC program, is a key provision for making this intervention successful.

Information on the effectiveness of hemostatic dressings is centered on their ability to stop bleeding but little other outcome data related to human use have been reported in the available literature.

Published information on civilian use of tourniquets and hemostatic dressings is sparse. Prospective data collection on utilization and outcomes with these products in the civilian setting would be helpful for confirming the applicability to the general population and civilian settings.

# References

- Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, Wald MM, Jurkovich GJ, Newgard CD, Lerner EB, Cooper A, Wang SC, Henry MC, Salomone JP, Galli RL, Centers for Disease Control and Prevention (CDC). Guidelines for field triage of injured patients: recommendations of the National Expert Panel on Field Triage, 2011. MMWR Recomm Rep. 2012 Jan 13;61(RR-1):1-20. PMID: 22237112
- NHTSA National Center for Statistics and Analysis. Traffic safety facts: 2010 data [DOT HS 811 630]. Washington (DC): U.S. Department of Transportation, National Highway Traffic Safety Administration (NHTSA); 2012 Jun. 12 p. Available at: <u>http://www-</u> nrd.nhtsa.dot.gov/Pubs/811630.pdf.
- Murray CJ, Abraham J, Ali MK, Alvarado M, Atkinson C, Baddour LM, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013 Jul 10;Epub ahead of print. PMID: 23842577
- Kauvar DS, Sarfati MR, Kraiss LW. National trauma databank analysis of mortality and limb loss in isolated lower extremity vascular trauma. J Vasc Surg. 2011 Jun;53(6):1598-603. PMID: 21514772
- Dorlac WC, DeBakey ME, Holcomb JB, Fagan SP, Kwong KL, Dorlac GR, Schreiber MA, Persse DE, Moore FA, Mattox KL. Mortality from isolated civilian penetrating extremity injury. J Trauma. 2005 Jul;59(1):217-22. PMID: 16096567
- Butler FK Jr, Holcomb JB, Giebner SD, McSwain NE, Bagian J. Tactical combat casualty care 2007: evolving concepts and battlefield experience. Mil Med. 2007 Nov;172(11 Suppl):1-19. PMID: 18154234
- Butler FK. Tactical Combat Casualty Care: update 2009. J Trauma. 2010 Jul;69 Suppl 1:S10-3. PMID: 20622602
- Butler FK Jr, Blackbourne LH. Battlefield trauma care then and now: a decade of Tactical Combat Casualty Care. J Trauma Acute Care Surg. 2012 Dec;73(6 Suppl 5):S395-402. PMID: 23192061
- 9. Butler FK, Carmona R. Tactical combat casualty care: from the battlefields of Afghanistan and Iraq to the streets of America. Tactical Edge. 2012 Winter;86-91.

- Kragh JF Jr, Walters TJ, Baer DG, Fox CJ, Wade CE, Salinas J, Holcomb JB. Practical use of emergency tourniquets to stop bleeding in major limb trauma. J Trauma. 2008 Feb;64(2 Suppl):S38-49; discussion S49-50. PMID: 18376170
- Kragh JF Jr, Walters TJ, Baer DG, Fox CJ, Wade CE, Salinas J, Holcomb JB. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg. 2009 Jan;249(1):1-7. PMID: 19106667
- Kotwal RS, Montgomery HR, Kotwal BM, Champion HR, Butler FK Jr, Mabry RL, Cain JS, Blackbourne LH, Mechler KK, Holcomb JB. Eliminating preventable death on the battlefield. Arch Surg. 2011 Dec;146(12):1350-8. PMID: 21844425
- Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, Mallett O, Zubko T, Oetjen-Gerdes L, Rasmussen TE, Butler FK, Kotwal RS, Holcomb JB, Wade C, Champion H, Lawnick M, Moores L, Blackbourne LH. Death on the battlefield (2001-2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012 Dec;73(6 Suppl 5):S431-7. PMID: 23192066
- Lee C, Porter KM, Hodgetts TJ. Tourniquet use in the civilian prehospital setting. Emerg Med J. 2007 Aug;24(8):584-7. PMID: 17652690
- 15. Doyle GS, Taillac PP. Tourniquets: a review of current use with proposals for expanded prehospital use. Prehosp Emerg Care. 2008 Apr-Jun;12(2):241-56. PMID: 18379924
- 16. Sharpe DB, Barneby EM, Russell RJ. New approaches to the management of traumatic external haemorrhage. Trauma. 2011 Jan;13(1):47-55.
- Lockey DJ, Weaver AE, Davies GE. Practical translation of hemorrhage control techniques to the civilian trauma scene. Transfusion. 2013 Jan;53 Suppl 1:17S-22S. PMID: 23301967
- Elster EA, Butler FK, Rasmussen TE. Implications of combat casualty care for mass casualty events. JAMA. 2013 Aug 7;310(5):475-6.
- Biddinger PD, Baggish A, Harrington L, D'Hemecourt P, Hooley J, Jones J, Kue R, Troyanos C, Dyer KS. Be prepared - the Boston marathon and mass-casualty events. N Engl J Med. 2013;368(21):1958-60.

- Kragh JF Jr, Murphy C, Dubick MA, Baer DG, Johnson J, Blackbourne LH. New tourniquet device concepts for battlefield hemorrhage control. Army Med Dept J. 2011 Apr-Jun;38-48. PMID: 21607905
- 21. Tactical combat casualty care guidelines. Washington , DC: Military Health System; 2012 Sep 17. 14 p. Available at: <u>http://www.health.mil/Libraries/120917\_TCC</u> <u>C\_Course\_Materials/TCCC-Guidelines-120917.pdf</u>.
- 22. Military Health System (MHS). Tactical combat casualty care curriculum. [Web site]. Washington (DC): Military Health System (MHS), U.S. Department of Defense; [accessed 2013 Oct 1]. [various]. Available: http://www.health.mil/Education\_And\_Trainin g/TCCC.aspx.
- Mabry RL. Tourniquet use on the battlefield. Mil Med. 2006 May;171(5):352-6. PMID: 16761880
- Welling DR, Burris DG, Hutton JE, Minken SL, Rich NM. A balanced approach to tourniquet use: lessons learned and relearned. J Am Coll Surg. 2006 Jul;203(1):106-15.
- 25. Richey SL. Tourniquets for the control of traumatic hemorrhage: a review of the literature. J Spec Oper Med. 2009;9(1):56-64. PMID: 19813349
- 26. Kragh JF Jr. Use of tourniquets and their effects on limb function in the modern combat environment. Foot Ankle Clin. 2010 Mar;15(1):23-40. PMID: 20189115
- 27. Smith ER, Shapiro GL. Totally tourniquets. JEMS. 2013 Nov;:48, 50, 52.
- Walters TJ, Wenke JC, Kauvar DS, McManus JG, Holcomb JB, Baer DG. Effectiveness of self-applied tourniquets in human volunteers. Prehosp Emerg Care. 2005 Oct-Dec;9(4):416-22. PMID: 16263675
- 29. Mann-Salinas EA, Kragh JF Jr, Dubick MA, Baer DG, Blackbourne LH. Assessment of users to control simulated junctional hemorrhage with the combat ready clamp (CRoC). Int J Burns Trauma. 2013;3(1):49-54. PMID: 23386985
- Fitzgibbons PG, Digiovanni C, Hares S, Akelman E. Safe tourniquet use: a review of the evidence. J Am Acad Orthop Surg. 2012 May;20(5):310-9. PMID: 22553103
- Kheirabadi B. Evaluation of topical hemostatic agents for combat wound treatment. US Army Med Dept J. 2011 Apr-Jun;25-37. PMID: 21607904

- Smith AH, Laird C, Porter K, Bloch M. Haemostatic dressings in prehospital care. Emerg Med J. 2012 Nov 17;Epub ahead of print. PMID: 23161808
- 33. Kheirabadi BS, Arnaud F, McCarron R, Murdock AD, Hodge DL, Ritter B, Dubick MA, Blackbourne LH. Development of a standard swine hemorrhage model for efficacy assessment of topical hemostatic agents. J Trauma. 2011 Jul;71(1 Suppl):S139-46. PMID: 21795871
- 34. Gerlach T, Grayson JK, Pichakron KO, Sena MJ, DeMartini SD, Clark BZ, Estep JS, Zierold D. Preliminary study of the effects of smectite granules (WoundStat) on vascular repair and wound healing in a swine survival model. J Trauma. 2010 Nov;69(5):1203-9. PMID: 20068476
- Filips D, Logsetty S, Tan J, Atkinson I, Mottet K. The iTClamp Controls Junctional Bleeding in a Lethal Swine Exsanguination Model. Prehosp Emerg Care. 2013 Oct-Dec;17(4):526-32. PMID: 23968337
- 36. Viswanathan M, Ansari MT, Berkman ND, Chang S, Hartling L, McPheeters LM, Santaguida PL, Shamliyan T, Singh K, Tertsvadze A, Treadwell JR. Assessing the risk of bias of individual studies in systematic reviews of health care interventions. Agency for Healthcare Research and Quality methods guide for comparative effectiveness reviews [AHRQ Publication No. 12-EGC047-EF]. Rockville (MD): Agency for Healthcare Research and Quality (AHRQ); 2012 Mar. 33 p. Available at: http://www.effectivehealthcare.ahrq.gov.
- Narine L, Yee DS, Einarson TR, Ilersich AL. Quality of abstracts of original research articles in CMAJ in 1989. CMAJ. 1991 Feb 15;144(4):449-53. PMID: 1993292
- Pitkin RM, Branagan MA, Burmeister LF. Accuracy of data in abstracts of published research articles. JAMA. 1999 Mar 24-31;281(12):1110-1. PMID: 10188662
- 39. Owens DK, Lohr KN, Atkins D, Treadwell JR, Reston JT, Bass EB, Chang S, Helfand M. Grading the strength of a body of evidence when comparing medical interventions-Agency for Healthcare Research and Quality and the Effective Health Care Program. J Clin Epidemiol. 2010 May;63(5):513-23. PMID: 19595577

- Guyatt G, Oxman AD, Akl E, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, Debeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schunemann HJ. GRADE guidelines 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011 Apr;64(4):383-94. PMID: 21195583
- Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011 Apr;64(4):401-6. PMID: 21208779
- Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, Brozek J, Norris S, Meerpohl J, Djulbegovic B, Alonso-Coello P, Post PN, Busse JW, Glasziou P, Christensen R, Schunemann HJ. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol. 2013 Feb;66(2):158-72. PMID: 22609141
- Atkins D, Chang S, Gartlehner G, Buckley DI, Whitlock EP, Berliner E, Matchar D. Assessing applicability when comparing medical interventions: Agency for Healthcare Research and Quality and the Effective Health Care Program. J Clin Epidemiol. 2011 Nov;64(11):1198-207. Epub 2011 Apr 3. PMID: 21463926
- 44. Lairet JR, Bebarta VS, Burns CJ, Lairet KF, Rasmussen TE, Renz EM, King BT, Fernandez W, Gerhardt R, Butler F, DuBose J, Cestero R, Salinas J, Torres P, Minnick J, Blackbourne LH. Prehospital interventions performed in a combat zone: a prospective multicenter study of 1,003 combat wounded. J Trauma Acute Care Surg. 2012 Aug;73(2 Suppl 1):S38-42. PMID: 22847092
- 45. Gerhardt RT, Berry JA, Blackbourne LH. Analysis of life-saving interventions performed by out-of-hospital combat medical personnel. J Trauma. 2011 Jul;71(1 Suppl):S109-13. PMID: 21795868
- 46. Kragh JF Jr, Wade CE, Baer DG, Jones JA, Walters TJ, Hsu JR, Wenke JC, Blackbourne LH, Holcomb JB. Fasciotomy rates in Operations Enduring Freedom and Iraqi Freedom: association with injury severity and tourniquet use. J Orthop Trauma. 2011 Mar;25(3):134-9. PMID: 21321506

- Kragh JF Jr, O'Neill ML, Walters TJ, Dubick MA, Baer DG, Wade CE, Holcomb JB, Blackbourne LH. The military emergency tourniquet program's lessons learned with devices and designs. Mil Med. 2011 Oct;176(10):1144-52. PMID: 22128650
- 48. Kragh JF Jr, O'Neill ML, Walters TJ, Jones JA, Baer DG, Gershman LK, Wade CE, Holcomb JB. Minor morbidity with emergency tourniquet use to stop bleeding in severe limb trauma: research, history, and reconciling advocates and abolitionists. Mil Med. 2011 Jul;176(7):817-23. PMID: 22128725
- 49. Kragh JF Jr, Littrel ML, Jones JA, Walters TJ, Baer DG, Wade CE, Holcomb JB. Battle casualty survival with emergency tourniquet use to stop limb bleeding. J Emerg Med. 2011 Dec;41(6):590-7. PMID: 19717268
- 50. Kalish J, Burke P, Feldman J, Agarwal S, Glantz A, Moyer P, Serino R, Hirsch E. The return of tourniquets. Original research evaluates the effectiveness of prehospital tourniquets for civilian penetrating extremity injuries. JEMS. 2008 Aug;33(8):44-6. PMID: 18692730
- 51. Kragh JF Jr, Cooper A, Aden JK, Dubick MA, Baer DG, Wade CE, Blackbourne LH. Survey of trauma registry data on tourniquet use in pediatric war casualties. Pediatr Emerg Care. 2012 Dec;28(12):1361-5. PMID: 23187998
- 52. Beekley AC, Sebesta JA, Blackbourne LH, Herbert GS, Kauvar DS, Baer DG, Walters TJ, Mullenix PS, Holcomb JB, 31st Combat Support Hospital Research Group. Prehospital tourniquet use in Operation Iraqi Freedom: effect on hemorrhage control and outcomes. J Trauma. 2008 Feb;64(2 Suppl):S28-37; discussion S37. PMID: 18376169
- Clasper JC, Brown KV, Hill P. Limb complications following pre-hospital tourniquet use. J R Army Med Corps. 2009 Sep;155(3):200-2. PMID: 20397360
- 54. King DR, van der Wilden G, Kragh JF Jr, Blackbourne LH. Forward assessment of 79 prehospital battlefield tourniquets used in the current war. J Spec Oper Med. 2012 Winter;12(4):33-8. PMID: 23536455
- 55. Brown KV, Murray CK, Clasper JC. Infectious complications of combat-related mangled extremity injuries in the British military. J Trauma. 2010;69(Suppl 1):S109-S114. PMID: 20622604

- 56. Brodie S, Hodgetts TJ, Ollerton J, McLeod J, Lambert P, Mahoney P. Tourniquet use in combat trauma: U.K. military experience. J Spec Oper Med. 2009 Winter;9(1):74-7. PMID: 19813352
- 57. Tien HC, Jung V, Rizoli SB, Acharya SV, MacDonald JC. An evaluation of tactical combat casualty care interventions in a combat environment. J Spec Oper Med. 2009 Winter;9(1):65-8. PMID: 19813350
- Dayan L, Zinmann C, Stahl S, Norman D. Complications associated with prolonged tourniquet application on the battlefield. Mil Med. 2008 Jan;173(1):63-6. PMID: 18251333
- Lakstein D, Blumenfeld A, Sokolov T, Lin G, Bssorai R, Lynn M, Ben-Abraham R. Tourniquets for hemorrhage control on the battlefield: a 4-year accumulated experience. J Trauma. 2003 May;54(5 Suppl):S221-5. PMID: 12768129
- Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Falck-Ytter Y, Jaeschke R, Vist G, Akl EA, Post PN, Norris S, Meerpohl J, Shukla VK, Nasser M, Schunemann HJ, GRADE Working Group. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J Clin Epidemiol. 2011 Dec;64(12):1303-10. PMID: 21802903
- Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, Norris SL, Williams JW Jr, Atkins D, Meerpohl J, Schunemann HJ. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol. 2011 Apr;64(4):407-15. PMID: 21247734
- 62. Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, Atkins D, Kunz R, Brozek J, Montori V, Jaeschke R, Rind D, Dahm P, Meerpohl J, Vist G, Berliner E, Norris S, Falck-Ytter Y, Murad MH, Schunemann HJ, GRADE Working Group. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol. 2011 Dec;64(12):1311-6. PMID: 21802902
- Brown MA, Daya MR, Worley JA. Experience with chitosan dressings in a civilian EMS system. J Emerg Med. 2009 Jul;37(1):1-7. PMID: 18024069
- 64. Cox ED, Schreiber MA, McManus J, Wade CE, Holcomb JB. New hemostatic agents in the combat setting. Transfusion. 2009 Dec;49 (Suppl 5):248S-55S. PMID: 19954487

- Pozza M, Millner RW. Celox (chitosan) for haemostasis in massive traumatic bleeding: experience in Afghanistan. Eur J Emerg Med. 2010 May 10;Epub ahead of print. PMID: 20461007
- 66. Ran Y, Hadad E, Daher S, Ganor O, Kohn J, Yegorov Y, Bartal C, Ash N, Hirschhorn G. QuikClot Combat Gauze use for hemorrhage control in military trauma: January 2009 Israel Defense Force experience in the Gaza Strip--a preliminary report of 14 cases. Prehosp Disaster Med. 2010 Nov-Dec;25(6):584-8. PMID: 21181695
- 67. Rhee P, Brown C, Martin M, Salim A, Plurad D, Green D, Chambers L, Demetriades D, Velmahos G, Alam H. QuikClot use in trauma for hemorrhage control: case series of 103 documented uses. J Trauma. 2008 Apr;64(4):1093-9. PMID: 18404080
- Wedmore I, McManus JG, Pusateri AE, Holcomb JB. A special report on the chitosanbased hemostatic dressing: experience in current combat operations. J Trauma. 2006 Mar;60(3):655-8. PMID: 16531872
- 69. Alam HB, Chen Z, Jaskille A, Querol RI, Koustova E, Inocencio R, Conran R, Seufert A, Ariaban N, Toruno K, Rhee P. Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in Swine. J Trauma. 2004 May;56(5):974-83. PMID: 15179235
- Alam HB, Uy GB, Miller D, Koustova E, Hancock T, Inocencio R, Anderson D, Llorente O, Rhee P. Comparative analysis of hemostatic agents in a swine model of lethal groin injury. J Trauma. 2003 Jun;54(6):1077-82. PMID: 12813325
- Rall JM, Cox JM, Songer AG, Cestero RF, Ross JD. Comparison of novel hemostatic dressings with QuikClot combat gauze in a standardized swine model of uncontrolled hemorrhage. J Trauma Acute Care Surg. 2013 Aug;75(2 Suppl 2):S150-6.
- 72. Schwartz RB, Reynolds BZ, Shiver SA, Lerner EB, Greenfield EM, Solis RA, Kimpel NA, Coule PL, McManus JG. Comparison of two packable hemostatic Gauze dressings in a porcine hemorrhage model. Prehosp Emerg Care. 2011 Oct-Dec;15(4):477-82. PMID: 21870945

- 73. Kheirabadi BS, Scherer MR, Estep JS, Dubick MA, Holcomb JB. Determination of efficacy of new hemostatic dressings in a model of extremity arterial hemorrhage in swine. J Trauma. 2009 Sep;67(3):450-9; discussion 459-60. PMID: 19741385
- 74. Kheirabadi BS, Edens JW, Terrazas IB, Estep JS, Klemcke HG, Dubick MA, Holcomb JB. Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine. J Trauma. 2009 Feb;66(2):316-26; discussion 327-8. PMID: 19204503
- Arnaud F, Teranishi K, Tomori T, Carr W, McCarron R. Comparison of 10 hemostatic dressings in a groin puncture model in swine. J Vasc Surg. 639;50(3):632-9. PMID: 19700097
- 76. Sambasivan CN, Cho SD, Zink KA, Differding JA, Schreiber MA. A highly porous silica and chitosan-based hemostatic dressing is superior in controlling hemorrhage in a severe groin injury model in swine. Am J Surg. 2009 May;197(5):576-80; discussion 580. PMID: 19393351
- 77. Englehart MS, Cho SD, Tieu BH, Morris MS, Underwood SJ, Karahan A, Muller PJ, Differding JA, Farrell DH, Schreiber MA. A novel highly porous silica and chitosan-based hemostatic dressing is superior to HemCon and gauze sponges. J Trauma. 2008 Oct;65(4):884-90; discussion 890-2. PMID: 18849807
- 78. Ward KR, Tiba MH, Holbert WH, Blocher CR, Draucker GT, Proffitt EK, Bowlin GL, Ivatury RR, Diegelmann RF. Comparison of a new hemostatic agent to current combat hemostatic agents in a Swine model of lethal extremity arterial hemorrhage. J Trauma. 2007 Aug;63(2):276-83; discussion 283-4. PMID: 17693824
- Acheson EM, Kheirabadi BS, Deguzman R, Dick EJ Jr, Holcomb JB. Comparison of hemorrhage control agents applied to lethal extremity arterial hemorrhages in swine. J Trauma. 2005 Oct;59(4):865-74; discussion 874-5. PMID: 16374275
- Clay JG, Grayson JK, Zierold D. Comparative testing of new hemostatic agents in a swine model of extremity arterial and venous hemorrhage. Mil Med. 2010 Apr;175(4):280-4. PMID: 20446504

- van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. Can animal models of disease reliably inform human studies?. PLoS Med. 2010;7(3):e1000245. PMID: 20361020
- 82. Satterly S, Nelson D, Zwintscher N, Oguntoye M, Causey W, Theis B, Huang R, Haque M, Martin M, Bickett G, Rush RM Jr. Hemostasis in a noncompressible hemorrhage model: an end-user evaluation of hemostatic agents in a proximal arterial injury. J Surg Educ. 2013 Mar;70(2):206-11. PMID: 23427965
- 83. Sohn VY, Eckert MJ, Martin MJ, Arthurs ZM, Perry JR, Beekley A, Rubel EJ, Adams RP, Bickett GL, Rush RM Jr. Efficacy of three topical hemostatic agents applied by medics in a lethal groin injury model. J Surg Res. 2009 Jun 15;154(2):258-61. PMID: 19329126
- 84. Wright JK, Kalns J, Wolf EA, Traweek F, Schwarz S, Loeffler CK, Snyder W, Yantis LD Jr, Eggers J. Thermal injury resulting from application of a granular mineral hemostatic agent. J Trauma. 2004 Aug;57(2):224-30. PMID: 15345965
- 85. Gegel B, Burgert J, Gasko J, Campbell C, Martens M, Keck J, Reynolds H, Loughren M, Johnson D. The effects of QuikClot Combat Gauze and movement on hemorrhage control in a porcine model. Mil Med. 2012 Dec;177(12):1543-7. PMID: 23397703
- Causey MW, McVay DP, Miller S, Beekley A, Martin M. The efficacy of Combat Gauze in extreme physiologic conditions. J Surg Res. 2012 Oct;177(2):301-5. PMID: 22785361
- Arnaud F, Teranishi K, Okada T, Parreno-Sacdalan D, Hupalo D, McNamee G, Carr W, Burris D, McCarron R. Comparison of Combat Gauze and TraumaStat in two severe groin injury models. J Surg Res. 2011 Jul;169(1):92-8. PMID: 20070980
- Kozen BG, Kircher SJ, Henao J, Godinez FS, Johnson AS. An alternative hemostatic dressing: comparison of CELOX, HemCon, and QuikClot. Acad Emerg Med. 2008 Jan;15(1):74-81. PMID: 18211317
- Arnaud F, Tomori T, Saito R, McKeague A, Prusaczyk WK, McCarron RM. Comparative efficacy of granular and bagged formulations of the hemostatic agent QuikClot. J Trauma. 2007 Oct;63(4):775-82. PMID: 18090005

- 90. Ahuja N, Ostomel TA, Rhee P, Stucky GD, Conran R, Chen Z, Al-Mubarak GA, Velmahos G, Demoya M, Alam HB. Testing of modified zeolite hemostatic dressings in a large animal model of lethal groin injury. J Trauma. 2006 Dec;61(6):1312-20. PMID: 17159671
- Wall PL, Duevel DC, Hassan MB, Welander JD, Sahr SM, Buising CM. Tourniquets and occlusion: the pressure of design. Mil Med. 2013 May;178(5):578-87. PMID: 23756019
- 92. Childers R, Tolentino JC, Leasiolagi J, Wiley N, Liebhardt D, Barbabella S, Kragh JF Jr. Tourniquets exposed to the Afghanistan combat environment have decreased efficacy and increased breakage compared to unexposed tourniquets. Mil Med. 2011 Dec;176(12):1400-3.
- 93. Taylor DM, Vater GM, Parker PJ. An evaluation of two tourniquet systems for the control of prehospital lower limb hemorrhage. J Trauma. 2011 Sep;71(3):591-5. PMID: 21768905
- 94. King RB, Filips D, Blitz S, Logsetty S. Evaluation of possible tourniquet systems for use in the Canadian Forces. J Trauma. 2006 May;60(5):1061-71. PMID: 16688072
- 95. Wall PL, Welander JD, Singh A, Sidwell RA, Buising CM. Stretch and wrap style tourniquet effectiveness with minimal training. Mil Med. 2012 Nov;177(11):1366-73. PMID: 23198515
- 96. Guo JY, Liu Y, Ma YL, Pi HY, Wang JR. Evaluation of emergency tourniquets for prehospital use in China. Chin J Traumatol. 2011 Jun 1;14(3):151-5. PMID: 21635801
- Swan KG Jr, Wright DS, Barbagiovanni SS, Swan BC, Swan KG. Tourniquets revisited. J Trauma. 2009 Mar;66(3):672-5. PMID: 19276736
- 98. Fox N, Rajani RR, Bokhari F, Chiu WC, Kerwin A, Seamon MJ, Skarupa D, Frykberg E, Eastern Association for the Surgery of Trauma. Evaluation and management of penetrating lower extremity arterial trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012 Nov;73(5 Suppl 4):S315-20. PMID: 23114487

- 99. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Stahel PF, Vincent JL, Spahn DR, Task Force for Advanced Bleeding Care in Trauma. Management of bleeding following major trauma: an updated European guideline. Crit Care. 2010;14(2):R52. PMID: 20370902
- 100. Granville-Chapman J, Jacobs N, Midwinter MJ. Pre-hospital haemostatic dressings: a systematic review. Injury. 2011 May;42(5):447-59. PMID: 21035118
- 101. Galante JM, Smith CA, Sena MJ, Scherer LA, Tharratt RS. Identification of barriers to adaptation of battlefield technologies into civilian trauma in california. Mil Med. 2013;178(11):1227-30. PMID: 24183771
- Zentai C, Grottke O, Spahn DR, Rossaint R. Nonsurgical techniques to control massive bleeding. Anesthesiol Clin. 2013 Mar;31(1):41-53.
- 103. Moriwaki Y, Toyoda H, Harunari N, Iwashita M, Kosuge T, Arata S, Suzuki N. Gauze packing as damage control for uncontrollable haemorrhage in severe thoracic trauma. Ann R Coll Surg Engl. 2013 Jan;95(1):20-5. PMID: 23317720
- 104. Fitzpatrick GM, Cliff R, Tandon N. Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage. Transfusion. 2013 Jan;:53 Suppl 1:100S-106S. PMID: 23301961
- 105. Riha GA, Schreiber MA. Update and new developments in the management of the exsanguinating patient. J Intensive Care Med. 2013 Jan-Feb;28(1):46-57. PMID: 21747123
- 106. Adkins CL. Wound care dressings and choices for care of wounds in the home. Home Healthc Nurse. 2013 May;31(5):259-67. PMID: 23652977
- 107. Abrassart S, Stern R, Peter R. Unstable pelvic ring injury with hemodynamic instability: what seems the best procedure choice and sequence in the initial management. Orthop Traumatol Surg Res. 2013 Apr;99(2):175-82. PMID: 23462306
- 108. Inaba K, Branco BC, Rhee P, Putty B, Okoye O, Barmparas G, Talving P, Demetriades D. Long-term preclinical evaluation of the intracorporeal use of advanced local hemostatics in a damage-control swine model of grade IV liver injury. J Trauma Acute Care Surg. 2013 Feb;74(2):538-45. PMID: 23354248

- 109. Phaneuf MD, Bide MJ, Hannel SL, Platek MJ, Monahan TS, Contreras MA, Phaneuf TM, LoGerfo FW. Development of an infectionresistant, bioactive wound dressing surface. J Biomed Mater Res A. 2005 Sep 15;74(4):666-76. PMID: 16028237
- 110. Nitecki SS, Karram T, Ofer A, Engel A, Hoffman A. Management of combat vascular injuries using modern imaging: are we getting better? Emerg Med Int. 2013;2013:689473. Epub 2013 Jan 10.
- 111. Muthukumar T, Senthil R, Sastry TP. Synthesis and characterization of biosheet impregnated with Macrotyloma uniflorum extract for burn/wound dressings. Colloids Surf B Biointerfaces. 2013 Feb 01;102:694-9.
- 112. Sellei RM, Schandelmaier P, Kobbe P, Knobe M, Pape HC. Can a modified anterior external fixator provide posterior compression of AP compression type III pelvic injuries? Clin Orthop Relat Res. 2013 Sep;471(9):2862-8. PMID: 23604604
- 113. Carr D, Kieser J, Mabbott A, Mott C, Champion S, Girvan E. Damage to apparel layers and underlying tissue due to hand-gun bullets. Int J Legal Med. 2013 Apr 19. [Epub ahead of print]. PMID: 23604393
- 114. Metsemakers WJ, Vanderschot P, Jennes E, Nijs S, Heye S, Maleux G. Transcatheter embolotherapy after external surgical stabilization is a valuable treatment algorithm for patients with persistent haemorrhage from unstable pelvic fractures: outcomes of a single centre experience. Injury. 2013 Jul;44(7):964-8. Epub 2013 Feb 8. PMID: 23398901
- 115. Boonkong W, Petsom A, Thongchul N. Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/polycaprolactone wound dressing device. J Mater Sci Mater Med. 2013 Jun;24(6):1581-93. Epub 2013 Apr 24. PMID: 23612939
- 116. Wu J, Lemarie CA, Barralet J, Blostein MD. Amphiphilic peptide-loaded nanofibrous calcium phosphate microspheres promote hemostasis in vivo. Acta Biomater. 2013 Jun 21. [Epub ahead of print]. PMID: 23796406
- 117. Pavic R, Margetic P. Emergency treatment for clinically unstable patients with pelvic fracture and haemorrhage. Coll Antropol. 2012 Dec;36(4):1445-52. PMID: 23390848

- 118. Gansslen A, Hildebrand F, Pohlemann T. Management of hemodynamic unstable patients "in extremis" with pelvic ring fractures. Acta Chir Orthop Traumatol Cech. 2012;79(3):193-202. PMID: 22840950
- 119. Hauschild O, Aghayev E, von Heyden J, Strohm PC, Culemann U, Pohlemann T, Suedkamp NP, Schmal H. Angioembolization for pelvic hemorrhage control: results from the German pelvic injury register. J Trauma Acute Care Surg. 2012 Sep;73(3):679-84. PMID: 22710767
- 120. Pohlemann T, Culemann U, Holstein JH. Initial experience using a pelvic emergency simulator to train reduction in blood loss. Clin Orthop Relat Res. 2012 Aug;470(8):2098-103. PMID: 22311726
- 121. Daruwalla ZJ, Rowan F, Finnegan M, Fennell J, Neligan M. Exsanguinators and tourniquets: do we need to change our practice?. Surgeon. 2012 Jun;10(3):137-42. PMID: 22008294
- Percival TJ, Rasmussen TE. Reperfusion strategies in the management of extremity vascular injury with ischaemia. Br J Surg. 2012 Jan;99 Suppl 1:66-74. PMID: 22441858
- 123. Gruen RL, Brohi K, Schreiber M, Balogh ZJ, Pitt V, Narayan M, Maier RV. Haemorrhage control in severely injured patients. Lancet. 2012 Sep;380(9847):1099-1108.
- 124. Palmier B. [Conditions for the survival of combat casualties in overseas operations: procedure and experience from the Afghan out-of-hospital theater]. Bull Acad Natl Med. 2012 Apr-May;196(4-5):893-907. PMID: 23550451
- 125. Travers S, Dubourg O, Ribeiro Parenti L, Lefort H, Albarello S, Domanski L. [Prehospital use of haemostatic dressing QuikClot ACS+ for hemorrhage control of a perineal trauma]. Ann Fr Anesth Reanim. 2012 Dec;31(12):969-71. PMID: 23164651
- 126. Yang JH, Lim H, Yoon JR, Jeong HI. Tourniquet associated chemical burn. Indian J Orthop. 2012 May;46(3):356-9. PMID: 22719126
- 127. Du L, Tong L, Jin Y, Jia J, Liu Y, Su C, Yu S, Li X. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen. 2012 Nov-Dec;20(6):904-10. PMID: 23110551
- 128. Hu G, Xiao L, Tong P, Bi D, Wang H, Ma H, Zhu G, Liu H. Antibacterial hemostatic dressings with nanoporous bioglass containing silver. Int J Nanomedicine. 2012;7:2613-20. PMID: 22745538
- 129. Morrison JJ, Percival TJ, Markov NP, Villamaria C, Scott DJ, Saches KA, Spencer JR, Rasmussen TE. Aortic balloon occlusion is effective in controlling pelvic hemorrhage. J Surg Res. 2012 Oct;177(2):341-7. PMID: 22591921
- 130. Korkmaz T, Sarikas NG, Kilicgun A, Serin E, Boran C. The mechanism of activity of ankaferd blood stopper in the control of arterial bleeding and in the process of wound healing. HealthMED. 2012;6(11):3736-3743.
- 131. Xie H, Lucchesi L, Teach JS, Virmani R. Long-term outcomes of a chitosan hemostatic dressing in laparoscopic partial nephrectomy. J Biomed Mater Res B Appl Biomater. 2012 Feb;100 B(2):432-6.
- 132. Shoffstall AJ, Atkins KT, Groynom RE, Varley ME, Everhart LM, Lashof-Sullivan MM, Martyn-Dow B, Butler RS, Ustin JS, Lavik EB. Intravenous hemostatic nanoparticles increase survival following blunt trauma injury. Biomacromolecules. 2012 Nov 12;13(11):3850-7. PMID: 22998772
- 133. Hansen A, McMillan L, Morrison A, Petrik J, Bradley M. Polymers for the rapid and effective activation and aggregation of platelets. Biomaterials. 2011 Oct;32(29):7034-41.
- Wigginton JG, Roppolo L, Pepe PE. Advances in resuscitative trauma care. Minerva Anestesiol. 2011 Oct;77(10):993-1002. PMID: 21952600
- 135. Rtshiladze MA, Andersen SP, Nguyen DQ, Grabs A, Ho K. The 2009 Sydney shark attacks: case series and literature review. ANZ J Surg. 2011 May;81(5):345-51. PMID: 21518184
- 136. Kubiak BD, Albert SP, Gatto LA, Vieau CJ, Roy SK, Snyder KP, Maier KG, Nieman GF. A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury. J Surg Res. 2011 Mar;166(1):e59-69. PMID: 21193206
- Clamp JA, Moran CG. Haemorrhage control in pelvic trauma. Trauma. 2011 Oct;13(4):300-316.
- 138. Lustenberger T, Meier C, Benninger E, Lenzlinger PM, Keel MJ. C-clamp and pelvic packing for control of hemorrhage in patients with pelvic ring disruption. J Emerg Trauma Shock. 2011 Oct;4(4):477-82. PMID: 22090741

- 139. Razavi S, Ardakani HZ, Rajai S, Hollisaz M, Sadeghipoor H, Farshad A, Shojaeezadeh D, Khodai G. Trends in Prevalent Injuries among Iranian Pilgrims in Hajj. Iran J Public Health. 2011;40(2):110-5. PMID: 23113080
- 140. Dregelid EB, Pedersen G. Treatment of major vein injury with the hemostatic fleece TachoSil by interposing a peritoneal patch to avoid vein thrombosis: a feasibility study in pigs. J Emerg Trauma Shock. 2011 Jan;4(1):77-81. PMID: 21633573
- 141. Valentine R, Boase S, Jervis-Bardy J, Dones Cabral JD, Robinson S, Wormald PJ. The efficacy of hemostatic techniques in the sheep model of carotid artery injury. Int Forum Allergy Rhinol. 2011 Mar-Apr;1(2):118-22. PMID: 22287330
- 142. Inaba K, Rhee P, Teixeira PG, Barmparas G, Putty B, Branco BC, Cohn S, Demetriades D. Intracorporeal use of advanced local hemostatics in a damage control swine model of grade IV liver injury. J Trauma. 2011 Nov;71(5):1312-8. PMID: 22002611
- 143. White JM, Cannon JW, Stannard A, Burkhardt GE, Spencer JR, Williams K, Oh JS, Rasmussen TE. Direct vascular control results in less physiologic derangement than proximal aortic clamping in a porcine model of noncompressible extrathoracic torso hemorrhage. J Trauma. 2011 Nov;71(5):1278-86; discussion 1286-7. PMID: 22071929
- 144. Grottke O, Braunschweig T, Daheim N, Coburn M, Grieb G, Rossaint R, Tolba R. Effect of TachoSil in a coagulopathic pig model with blunt liver injuries. J Surg Res. 2011 Nov;171(1):234-9. PMID: 20452609
- 145. De Castro GP, MacPhee MJ, Driscoll IR, Beall D, Hsu J, Zhu S, Hess JR, Scalea TM, Bochicchio GV. New hemostatic dressing (FAST Dressing) reduces blood loss and improves survival in a grade V liver injury model in noncoagulopathic swine. J Trauma. 2011 Jun;70(6):1408-12. PMID: 21817977
- 146. White JM, Cannon JW, Stannard A, Spencer JR, Hancock H, Williams K, Oh JS, Rasmussen TE. A porcine model for evaluating the management of noncompressible torso hemorrhage. J Trauma. 2011 Jul;71(1 Suppl):S131-8. PMID: 21795889

- 147. Schnuriger B, Inaba K, Barmparas G, Rhee P, Putty B, Branco BC, Talving P, Demetriades D. A new survivable damage control model including hypothermia, hemodilution, and liver injury. J Surg Res. 2011 Jul;169(1):99-105. PMID: 20036395
- 148. Spector D, Perry Z, Konobeck T, Mooradian D, Shikora S. Comparison of hemostatic properties between collagen and synthetic buttress materials used in staple line reinforcement in a swine splenic hemorrhage model. Surg Endosc. 2011 Apr;25(4):1148-52. PMID: 20835722
- 149. Pick DL, Kolla SB, Mucksavage P, Louie MK, Sountoulides P, Kaufmann O, Olamendi S, Kaplan A, Huynh V, Ortiz-Vanderdys C, Truong HP, Said SA, Andrade L, Tongson-Ignacio J, McDougall EM, Clayman RV. Sprayed fibrin sealant as the sole hemostatic agent for porcine laparoscopic partial nephrectomy. J Urol. 2011 Jan;185(1):291-7. PMID: 21075389
- 150. Anilkumar TV, Muhamed J, Jose A, Jyothi A, Mohanan PV, Krishnan LK. Advantages of hyaluronic acid as a component of fibrin sheet for care of acute wound. Biologicals. 2011 Mar;39(2):81-8.
- 151. Hutchinson RW, Broughton D, Barbolt TA, Poandl T, Muench T, Rockar R, Johnson M, Hart J. Hemostatic effectiveness of Fibrin pad after partial nephrectomy in swine. J Surg Res. 2011 May 15;167(2):e291-8. PMID: 20451926
- 152. Lu C-R, Chen L, Chen W-B, Dou C-Q, Liu R, Huang Z-Q. Absorbable bandage wrapping in treatment of severe blast liver injury: a miniature swine model. Chin Med J (Engl). 2011 Nov 11;124(22):3757-3761.
- Jagodzinski NA, Weerasinghe C, Porter K. Crush injuries and crush syndrome - A review. Part 1: The systemic injury. Trauma. 2010 Apr;12(2):69-88.
- Williams-Johnson J, Williams E, Watson H. Management and treatment of pelvic and hip injuries. Emerg Med Clin North Am. 2010 Nov;28(4):841-59.
- 155. Feliciano DV. Management of peripheral arterial injury. Curr Opin Crit Care. 2010 Dec;16(6):602-8. PMID: 20852417
- 156. Kheirabadi BS, Mace JE, Terrazas IB, Fedyk CG, Estep JS, Dubick MA, Blackbourne LH. Safety evaluation of new hemostatic agents, smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine. J Trauma. 2010 Feb;68(2):269-78. PMID: 20154537

- 157. Estrera AL, Gochnour DC, Azizzadeh A, Miller CC 3rd, Coogan S, Charlton-Ouw K, Holcomb JB, Safi HJ. Progress in the treatment of blunt thoracic aortic injury: 12year single-institution experience. Ann Thorac Surg. 2010 Jul;90(1):64-71. PMID: 20609750
- 158. Pollak AN, Powell ET, Fang R, Cooper EO, Ficke JR, Flaherty SF. Use of negative pressure wound therapy during aeromedical evacuation of patients with combat-related blast injuries. J Surg Orthop Adv. 2010;19(1):44-8. PMID: 20371006
- 159. Silver dressings Do they work?. Drug Ther Bull. 2010 Apr;48(4):38-42.
- 160. Sinha CVK, Anand LCS. Extremity and orthopaedic injuries. Med J Armed Forces India. 2010 Oct;66(4):342-6.
- 161. Dubose J, Inaba K, Barmparas G, Teixeira PG, Schnuriger B, Talving P, Salim A, Demetriades D. Bilateral internal iliac artery ligation as a damage control approach in massive retroperitoneal bleeding afterpelvic fracture. J Trauma. 2010 Dec;69(6):1507-1514.
- 162. Khashayar P, Amoli HA, Tavakoli H, Panahi F. Efficacy of pre-hospital care in trauma patients in Iran. Emerg Med J. 2010 Jun;27(6):430-2.
- Mylankal KJ, Wyatt MG. Control of major haemorrhage. Surgery (Oxford). November 2010;28(11):556-562.
- 164. Peng HT, Shek PN. Novel wound sealants: biomaterials and applications. Expert Rev Med Devices. 2010 Sep;7(5):639-659.
- 165. Ahmad Z. Playing with fire and getting burnt-a retrospective analysis of injuries presenting to the emergency department during 'firework season'. Eur J Plastic Surg. 2010 Aug;33(4):199-201.
- 166. Rich PB, Douillet C, Buchholz V, Overby DW, Jones SW, Cairns BA. Use of the novel hemostatic textile Stasilon(R) to arrest refractory retroperitoneal hemorrhage: a case report. J Med Case Rep. 2010;4:20. PMID: 20205876
- 167. Takacs I, Wegmann J, Horvath S, Ferencz A, Ferencz S, Javor S, Odermatt E, Roth E, Weber G. Efficacy of different hemostatic devices for severe liver bleeding: a randomized controlled animal study. Surg Innov. 2010 Dec;17(4):346-52. PMID: 20870671

- 168. Rothwell SW, Settle T, Wallace S, Dorsey J, Simpson D, Bowman JR, Janmey P, Sawyer E. The long term immunological response of swine after two exposures to a salmon thrombin and fibrinogen hemostatic bandage. Biologicals. 2010 Nov;38(6):619-28. PMID: 20705479
- 169. Millner R, Lockhart AS, Marr R. Chitosan arrests bleeding in major hepatic injuries with clotting dysfunction: an in vivo experimental study in a model of hepatic injury in the presence of moderate systemic heparinisation. Ann R Coll Surg Engl. 2010 Oct;92(7):559-61. PMID: 20522310
- 170. Bochicchio GV, Kilbourne MJ, Keledjian K, Hess J, Scalea T. Evaluation of a new hemostatic agent in a porcine grade V liver injury model. Am Surg. 2010 Mar;76(3):317-20. PMID: 20349664
- 171. Grottke O, Braunschweig T, Philippen B, Gatzweiler KH, Gronloh N, Staat M, Rossaint R, Tolba R. A new model for blunt liver injuries in the swine. Eur Surg Res. 2010;44(2):65-73. PMID: 19996600
- 172. Gu R, Sun W, Zhou H, Wu Z, Meng Z, Zhu X, Tang Q, Dong J, Dou G. The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent. Biomaterials. 2010 Feb;31(6):1270-7. PMID: 19880175
- 173. Hammes C, Moersdorf G, Refeidi A, Post S, Kaehler G. Endoscopic application of hemostatic thrombin-gelatin matrix (FloSeal) in anticoagulated pigs. Minim Invasive Ther Allied Technol. 2010;19(1):48-51. PMID: 20095898
- 174. Stratos I, Graff J, Rotter R, Mittlmeier T, Vollmar B. Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair. J Orthop Res. 2010 Jul;28(7):950-7.
- 175. Aysan E, Bektas H, Ersoz F, Sari S, Kaygusuz A, Huq GE. Ability of the ankaferd blood stopper to prevent parenchymal bleeding in an experimental hepatic trauma model. Int J Clin Exp Med. 2010;3(3):186-191.
- Spiro DM, Zonfrillo MR, Meckler GD. Wounds. Pediatr Rev. 2010 Aug 01;31(8):326-334.
- Adu-Frimpong J. Genitourinary trauma in boys. Clin Pediatr Emerg Med. 2009 Mar;10(1):45-9.

- 178. Claudet I, Pasian N, Debuisson C, Salanne S, Rekhroukh H. Tourniquet syndrome: interest of a systematic analysis of families' social conditions to detect neglect situations. Child Abuse Negl. 2009 Sep;33(9):569-72. PMID: 19811829
- 179. Van Natta TL, Smith BR, Bricker SD, Putnam BA. Hilar control in penetrating chest trauma: a simplified approach to an underutilized maneuver. J Trauma. 2009 Jun;66(6):1564-9. PMID: 19509615
- 180. Richard MJ, Tornetta P 3rd. Emergent management of APC-2 pelvic ring injuries with an anteriorly placed C-clamp. J Orthop Trauma. 2009 May-Jun;23(5):322-6. PMID: 19390358
- Chalkias AF. Prehospital emergency thoracotomy: when to do it?. J Emerg Prim Health Care. 2009;7(4).
- Berend K, Levi M. Management of adult Jehovah's Witness patients with acute bleeding. Am J Med. 2009 Dec;122(12):1071-6.
- Barnard AR, Allison K. The classification and principles of management of wounds in trauma. Trauma. 2009;11(3):163-176.
- 184. Bochicchio G, Kilbourne M, Kuehn R, Keledjian K, Hess J, Scalea T. Use of a modified chitosan dressing in a hypothermic coagulopathic grade V liver injury model. Am J Surg. 2009 Nov;198(5):617-22. PMID: 19887188
- 185. Wang Y, Lu W. [The study and clinical application of absorbable hemostatic agent]. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih. 2009 Aug;26(4):922-6. PMID: 19813641
- 186. Clay JG, Zierold D, Grayson K, Battistella FD. Dextran polymer hemostatic dressing improves survival in liver injury model. J Surg Res. 2009 Jul;155(1):89-93. PMID: 19041100
- 187. Adams GL, Manson RJ, Hasselblad V, Shaw LK, Lawson JH. Acute in-vivo evaluation of bleeding with Gelfoam plus saline and Gelfoam plus human thrombin using a liver square lesion model in swine. J Thromb Thrombolysis. 2009 Jul;28(1):1-5. PMID: 18629446
- 188. Xie H, Teach JS, Burke AP, Lucchesi LD, Wu PC, Sarao RC. Laparoscopic repair of inferior vena caval injury using a chitosan-based hemostatic dressing. Am J Surg. 2009 Apr;197(4):510-4. PMID: 18585679

- 189. Bjorses K, Holst J. Topical haemostatics in renal trauma--an evaluation of four different substances in an experimental setting. J Trauma. 2009 Mar;66(3):602-11. PMID: 19276727
- 190. Bilgili H, Kosar A, Kurt M, Onal IK, Goker H, Captug O, Shorbagi A, Turgut M, Kekilli M, Kurt OK, Kirazli S, Aksu S, Haznedaroglu IC. Hemostatic efficacy of ankaferd blood stopper in a swine bleeding model. Med Princ Pract. 2009 April;18(3):165-9.
- 191. Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB. Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med. 2009 Dec 16;1(11):11ra22. PMID: 20371456
- 192. Fischer TH, Vournakis JN, Manning JE, McCurdy SL, Rich PB, Nichols TC, Scull CM, McCord MG, Decorta JA, Johnson PC, Smith CJ. The design and testing of a dual fiber textile matrix for accelerating surface hemostasis. J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):381-9. PMID: 19489008
- 193. Liu Y, Kopelman D, Wu LQ, Hijji K, Attar I, Preiss-Bloom O, Payne GF. Biomimetic sealant based on gelatin and microbial transglutaminase: an initial in vivo investigation. J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):5-16. PMID: 19360881
- 194. Kheirabadi BS, Sieber J, Bukhari T, Rudnicka K, Murcin LA, Tuthill D. High-pressure fibrin sealant foam: an effective hemostatic agent for treating severe parenchymal hemorrhage. J Surg Res. 2008 Jan;144(1):145-50. PMID: 17583744
- 195. Chirinos FS. Local doctor creates clothing with tourniquets for troops. Tex Med. 2008 Feb;104(2):47-9. PMID: 18610892
- 196. Shokrollahi K, Sharma H, Gakhar H. A technique for temporary control of hemorrhage. J Emerg Med. 2008 Apr;34(3):319-20. PMID: 18164163
- 197. Hong JP, Kim YW, Lee SK, Kim SH, Min KH. The effect of continuous release of recombinant human epidermal growth factor (rh-EGF) in chitosan film on full thickness excisional porcine wounds. Ann Plast Surg. Oct 2008;61(4):457-462. PMID: 18812721

- 198. Cuschieri J, Freeman B, O'Keefe G, Harbrecht BG, Bankey P, Johnson JL, Minei JP, Sperry J, West M, Nathens A, Moore EE, Maier RV. Inflammation and the host response to injury a large-scale collaborative project: Patientoriented research core standard operating procedure for clinical care x. guidelines for venous thromboembolism prophylaxis in the trauma patient. J Trauma. 2008 October;65(4):944-950.
- Degiannis E, Zinn RJ. Pitfalls in penetrating thoracic trauma (lessons we learned the hard way...). Ulus Travma Acil Cerrahi Derg. 2008;14(4):261-7.
- 200. Bastos R, Baisden CE, Harker L, Calhoon JH. Penetrating thoracic trauma. Semin Thorac Cardiovasc Surg. 2008;20(1):19-25.
- 201. Kaneko N, Kobayashi Y, Okada Y. Anatomic variations of the renal vessels pertinent to transperitoneal vascular control in the management of trauma. Surgery. 2008 May;143(5):616-622.
- 202. Ong SY, Wu J, Moochhala SM, Tan MH, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008 Nov;29(32):4323-32. PMID: 18708251
- 203. Sanghi P, Virmani R, Do D, Erikson J, Elliott J, Cilingiroglu M, Matthews H, Kazi M, Ricker R, Bailey SR. A comparative evaluation of arterial blood flow and the healing response after femoral artery closure using angio-seal STS Plus and StarClose in a porcine model. J Interv Cardiol. 2008 Aug;21(4):329-36. PMID: 18573159
- 204. Xie H, Khajanchee YS, Shaffer BS. Chitosan hemostatic dressing for renal parenchymal wound sealing in a porcine model: implications for laparoscopic partial nephrectomy technique. J Soc Laparoendosc Surg. 2008 Jan-Mar;12(1):18-24. PMID: 18402734
- 205. Leixnering M, Reichetseder J, Schultz A, Figl M, Wassermann E, Thurnher M, Redl H. Gelatin thrombin granules for hemostasis in a severe traumatic liver and spleen rupture model in swine. J Trauma. 2008 Feb;64(2):456-61. PMID: 18301215

- 206. Delgado AV, Kheirabadi BS, Fruchterman TM, Scherer M, Cortez D, Wade CE, Dubick MA, Holcomb JB. A novel biologic hemostatic dressing (fibrin patch) reduces blood loss and resuscitation volume and improves survival in hypothermic, coagulopathic Swine with grade V liver injury. J Trauma. 2008 Jan;64(1):75-80. PMID: 18188102
- 207. Jesty J, Wieland M, Niemiec J. Assessment in vitro of the active hemostatic properties of wound dressings. J Biomed Mater Res B Appl Biomater. 2009 May;89(2):536-42. PMID: 18985792
- 208. Xie H, Khajanchee YS, Teach JS, Shaffer BS. Use of a chitosan-based hemostatic dressing in laparoscopic partial nephrectomy. J Biomed Mater Res B Appl Biomater. 2008 Apr;85(1):267-71. PMID: 17932955
- 209. Erdogan D, van Gulik TM. Evolution of fibrinogen-coated collagen patch for use as a topical hemostatic agent. J Biomed Mater Res B Appl Biomater. 2008 Apr;85(1):272-8. PMID: 17806107
- 210. Zhang M-X, Chen Z-H, Li J, Yang C-Y, Xie Z-G, Chen G-J. Hemostatic effect and biocompatibility of RT-Q medical biomembrane. J Clin Rehabil Tiss Eng Res. 2008 Jan 01;12(1):175-9.
- 211. Franz MG, Steed DL, Robson MC. Optimizing healing of the acute wound by minimizing complications. Curr Probl Surg. 2007 Nov;44(11):691-763. PMID: 18036992
- 212. Chaby G, Senet P, Vaneau M, Martel P, Guillaume JC, Meaume S, Teot L, Debure C, Dompmartin A, Bachelet H, Carsin H, Matz V, Richard JL, Rochet JM, Sales-Aussias N, Zagnoli A, Denis C, Guillot B, Chosidow O. Dressings for acute and chronic wounds: a systematic review. Arch Dermatol. 2007 Oct;143(10):1297-304. PMID: 17938344
- Almogy G, Rivkind AI. Terror in the 21st century: milestones and prospects-part II. Curr Probl Surg. 2007 Sep;44(9):566-619.
- 214. Honsik KA, Romeo MW, Hawley CJ, Romeo SJ, Romeo JP. Sideline skin and wound care for acute injuries. Curr Sports Med Rep. 2007 Jun;6(3):147-154.
- 215. Hirshberg A, Hoyt DB, Mattox KL. From "Leaky Buckets" to vascular injuries: understanding models of uncontrolled hemorrhage. J Am Coll Surg. 2007 Apr;204(4):665-672.

- 216. Kauvar DS, Baer DG, Walters TJ. Influence of systemic hypotension on skeletal muscle ischemia-reperfusion injury after 4-hour tourniquet application. J Surg Educ. 2007 Sep-Oct;64(5):273-7. PMID: 17961884
- 217. Rattanatayarom W, Wattanasirichaigoon S. Evaluation of dermal irritancy potential of Carboxymethyl-chitosan hydrogel and poly-(acrylic acid) chitin hydrogel. J Med Assoc Thai. 2007 Apr;90(4):724-9. PMID: 17487127
- 218. Sheikh BY. Efficacy of acrylate tissue adhesive as vascular repair and hemostatic material. Ann Vasc Surg. 2007 Jan;21(1):56-60. PMID: 17349337
- 219. Kheirabadi BS, Acheson EM, Deguzman R, Crissey JM, Delgado AV, Estep SJ, Holcomb JB. The potential utility of fibrin sealant dressing in repair of vascular injury in swine. J Trauma. 2007 Jan;62(1):94-103. PMID: 17215739
- 220. Roy SC, Paulose M, Grimes CA. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials. 2007 Nov;28(31):4667-72. PMID: 17692372
- 221. Bjorses K, Holst J. Various local hemostatic agents with different modes of action; an in vivo comparative randomized vascular surgical experimental study. Eur J Vasc Endovasc Surg. 2007 Mar;33(3):363-370.
- 222. Aballay AM, Recio P, Slater H, Goldfarb IW, Tolchin E, Papasavas P, Caushaj PF. The use of esmarch exsanguination for the treatment of extremity wound burns. Ann Burns Fire Disasters. 2007 Mar 31;20(1):22-4. PMID: 21991062
- 223. Vertrees A, Kellicut D, Ottman S, Peoples G, Shriver C. Early definitive abdominal closure using serial closure technique on injured soldiers returning from Afghanistan and Iraq. J Am Coll Surg. 2006 May;202(5):762-72. PMID: 16648016
- 224. Pursifull NF, Morris MS, Harris RA, Morey AF. Damage control management of experimental grade 5 renal injuries: further evaluation of FloSeal gelatin matrix. J Trauma. 2006 Feb;60(2):346-50. PMID: 16508494
- 225. Higgins TF, Swanson ER. Pelvic antishock sheeting. Air Med J. 2006 Mar-Apr;25(2):88-90. PMID: 16516121
- 226. Hunt PA, Greaves I, Owens WA. Emergency thoracotomy in thoracic trauma-a review. Injury. 2006 Jan;37(1):1-19. PMID: 16410079

- 227. Nzewi O, Slight RD, Zamvar V. Management of blunt thoracic aortic injury. Eur J Vasc Endovasc Surg. 2006 Jan;31(1):18-27. PMID: 16226902
- 228. Voinchet V, Vasseur P, Kern J. Efficacy and safety of hyaluronic acid in the management of acute wounds. Am J Clin Dermatol. 2006;7(6):353-7.
- 229. Schecter WP, Ivatury RR, Rotondo MF, Hirshberg A. Open abdomen after trauma and abdominal sepsis: a strategy for management. J Am Coll Surg. 2006 Sep;203(3):390-6.
- 230. Jurgens C, Schulz AP, Porte T, Faschingbauer M, Seide K. Biodegradable films in trauma and orthopedic surgery. Eur J Trauma. 2006 Apr;32(2):160-171.
- 231. De Alwis W. Fingertip injuries. Emerg Med Australas. June 2006;18(3):229-237.
- 232. Klemcke HG. Evaluation of FloSeal as a potential intracavitary hemostatic agent. J Trauma. 2006 Feb;60(2):385-9. PMID: 16508500
- Wang X, Yan Y, Zhang R. A comparison of chitosan and collagen sponges as hemostatic dressings. 2006 Jan;21(1):39-54.
- 234. Schreiber MA. Coagulopathy in the trauma patient. Curr Opin Crit Care. 2005 Dec;11(6):590-7. PMID: 16292065
- Pope LE, Hobbs CG. Epistaxis: an update on current management. Postgrad Med J. 2005 May;81(955):309-14. PMID: 15879044
- 236. Kataoka Y, Maekawa K, Nishimaki H, Yamamoto S, Soma K. Iliac vein injuries in hemodynamically unstable patients with pelvic fracture caused by blunt trauma. J Trauma. 2005 Apr;58(4):704-8; discussion 708-10. PMID: 15824645
- 237. Tiemann AH, Bohme J, Josten C. Emergency treatment of multiply injured patients with unstable disruption of the posterior pelvic ring by using the "C-clamp": analysis of 28 consecutive cases. Eur J Trauma. 2005 Jun 2005;31(3):244-251.
- 238. Brandenburg MA, Hawkins L, Quick G. Hand injuries, part 2: when nerves, vasculature, tendons, or ligaments are traumatized. Consultant. 2005 Mar;45(3):361-8.
- 239. Sagerman PJ. Wounds. Pediatr Rev. 2005 Feb 2005;26(2):43-9.
- Degiannis E, Bowley DM, Westaby S. Penetrating cardiac injury. Ann R Coll Surg Engl. 2005 Jan;87(1):61-3.

- 241. Rothwell SW, Reid TJ, Dorsey J, Flournoy WS, Bodo M, Janmey PA, Sawyer E. A salmon thrombin-fibrin bandage controls arterial bleeding in a swine aortotomy model. J Trauma. 2005 Jul;59(1):143-9. PMID: 16096554
- 242. Kheirabadi BS, Acheson EM, Deguzman R, Sondeen JL, Ryan KL, Delgado A, Dick EJ Jr, Holcomb JB. Hemostatic efficacy of two advanced dressings in an aortic hemorrhage model in Swine. J Trauma. 2005 Jul;59(1):25-34; discussion 34-5. PMID: 16096535
- 243. Cihan A, Yilmaz E, Yenidunya S, Ucan BH. Medical haemostasis in acute hepatocyte injury and experimental liver trauma. ANZ J Surg. 2005 Apr;75(4):239-43. PMID: 15839974
- 244. Hick EJ, Morey AF, Harris RA, Morris MS. Gelatin matrix treatment of complex renal injuries in a porcine model. J Urol. 2005 May;173(5):1801-4. PMID: 15821591
- 245. Laurence S, Bareille R, Baquey C, Fricain JC. Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res A. 2005 Jun 15;73(4):422-9. PMID: 15880722
- 246. Bochicchio G, Dunne J, Bochicchio K, Scalea T. The combination of platelet-enriched autologous plasma with bovine collagen and thrombin decreases the need for multiple blood transfusions in trauma patients with retroperitoneal bleeding. J Trauma. 2004 Jan;56(1):76-9. PMID: 14749569
- 247. Kopp J, Jeschke MG, Bach AD, Kneser U, Horch RE. Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix. Cell Tissue Bank. 2004;5(2):89-96.
- 248. Borowik S, Popko J, Ladny R, Slowinski K. [External stabilization in the treatment of unstable pelvis fractures combined with additional injuries of internal organs]. Pol Przegl Chir. 2004;76(3):285-95.
- 249. King DR, Cohn SM, Proctor KG, Miami Clinical Trials Group. Modified rapid deployment hemostat bandage terminates bleeding in coagulopathic patients with severe visceral injuries. J Trauma. 2004 Oct;57(4):756-9. PMID: 15514529
- 250. Gansslen A, Krettek C, Pohlemann T. Die temporare Stabilisierung des Beckenrings mit der sog. Notfallbeckenzwinge. Oper Orthop Traumatol. 2004 Jun;16(2):192-204.

- Giannoudis PV, Pape HC. Damage control orthopaedics in unstable pelvic ring injuries. Injury. 2004 Jul;35(7):671-7.
- 252. Ang CY, Samsudin AR, Karima AM, Nizam A. Locally produced bovine bone sponge as a haemostatic agent. Med J Malaysia. 2004 May;59 Suppl B:149-50. PMID: 15468862
- 253. Pusateri AE, Delgado AV, Dick EJ Jr, Martinez RS, Holcomb JB, Ryan KL. Application of a granular mineral-based hemostatic agent (QuikClot) to reduce blood loss after grade V liver injury in swine. J Trauma. 2004 Sep;57(3):555-62; discussion 562. PMID: 15454802
- 254. Schwaitzberg SD, Chan MW, Cole DJ, Read M, Nichols T, Bellinger D, Connolly RJ. Comparison of poly-N-acetyl glucosamine with commercially available topical hemostats for achieving hemostasis in coagulopathic models of splenic hemorrhage. J Trauma. 2004 Jul;57(1 Suppl):S29-32. PMID: 15280748
- 255. Krishnan LK, Mohanty M, Umashankar PR, Lal AV. Comparative evaluation of absorbable hemostats: advantages of fibrin-based sheets. Biomaterials. 2004 Nov;25(24):5557-63. PMID: 15142738
- 256. Griffith BC, Morey AF, Rozanski TA, Harris R, Dalton SR, Torgerson SJ, Partyka SR. Central renal stab wounds: treatment with augmented fibrin sealant in a porcine model. J Urol. 2004 Jan;171(1):445-7. PMID: 14665952
- 257. Doillon CJ, Dion Y-M. Comparison of a plasma-based composite biologic sealant with fibrin glue (Tisseel) for vascular anastomoses. Surg Laparosc Endosc Percutan Tech. 2004 Dec;14(6):335-9.
- 258. Vournakis JN, Demcheva M, Whitson A, Guirca R, Pariser ER. Isolation, purification, and characterization of poly-N-acetyl glucosamine use as a hemostatic agent. J Trauma. 2004 Jul;57(1 Suppl):S2-6.
- 259. Underhill S, Crumplin MKH. A high price for victory: the management of pain and transport of the sick and wounded in the Napoleonic Wars (1793-1815). CPD Anaesth. 2003;5(3):144-151.
- Starr AJ. Immediate management of pelvic fractures. Oper Tech Orthop. 2003 Apr;13(2):73-8.
- Donelan S. Teaching wound care and bandaging: an historical perspective. Wilderness Environ Med. 2003;14(1):47-56.

- 262. Salehian O, Teoh K, Mulji A. Blunt and penetrating cardiac trauma: a review. Can J Cardiol. 2003 Aug;19(9):1054-9.
- 263. Pusateri AE, Modrow HE, Harris RA, Holcomb JB, Hess JR, Mosebar RH, Reid TJ, Nelson JH, Goodwin CW Jr, Fitzpatrick GM, McManus AT, Zolock DT, Sondeen JL, Cornum RL, Martinez RS. Advanced hemostatic dressing development program: animal model selection criteria and results of a study of nine hemostatic dressings in a model of severe large venous hemorrhage and hepatic injury in Swine. J Trauma. 2003 Sep;55(3):518-26. PMID: 14501897
- 264. Vournakis JN, Demcheva M, Whitson AB, Finkielsztein S, Connolly RJ. The RDH bandage: hemostasis and survival in a lethal aortotomy hemorrhage model. J Surg Res. 2003 Jul;113(1):1-5. PMID: 12943803
- 265. Jewelewicz DD, Cohn SM, Crookes BA, Proctor KG. Modified rapid deployment hemostat bandage reduces blood loss and mortality in coagulopathic pigs with severe liver injury.[Erratum appears in J Trauma. 2003 Oct;55(4):621. J Trauma. 2003 Aug;55(2):275-80; discussion 280-1. PMID: 12913637
- 266. Singer AJ, Nable M, Cameau P, Singer DD, McClain SA. Evaluation of a new liquid occlusive dressing for excisional wounds. Wound Repair Regen. 2003 May-Jun;11(3):181-7. PMID: 12753599
- 267. Schreiber MA, Holcomb JB, Hedner U, Brundage SI, Macaitis JM, Aoki N, Meng ZH, Tweardy DJ, Hoots K. The effect of recombinant factor VIIa on noncoagulopathic pigs with grade V liver injuries. J Am Coll Surg. 2003 May;196(5):691-7. PMID: 12742197
- 268. Sondeen JL, Pusateri AE, Coppes VG, Gaddy CE, Holcomb JB. Comparison of 10 different hemostatic dressings in an aortic injury. J Trauma. 2003 Feb;54(2):280-5. PMID: 12579052
- 269. Pusateri AE, McCarthy SJ, Gregory KW, Harris RA, Cardenas L, McManus AT, Goodwin CW Jr. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J Trauma. 2003 Jan;54(1):177-82. PMID: 12544915
- 270. Peng Y, Ye C, Zou H, Liang P. Investigation of features of hemostasis sponge of collagen and chitosan compound. Chin J Clin Rehab. 2003 Jan;7(2):342.

- 271. Chiu J, Ketchum LH, Reid TJ. Transfusionsparing hemostatic agents. Curr Opin Hematol. 2002 Nov;9(6):544-50. PMID: 12394180
- 272. Rennie M. Trauma, immobility and undernutrition, the harbingers of insulin resistance. Br J Intensive Care. 2002;12(2):29.
- 273. O'Mara MS, Goel A, Recio P, Slater H, Goldfarb IW, Tolchin E, Caushaj PF. The use of tourniquets in the excision of unexsanguinated extremity burn wounds. Burns. 2002 Nov;28(7):684-7.
- 274. Schreiber MA, Holcomb JB, Hedner U, Brundage SI, Macaitis JM, Hoots K. The effect of recombinant factor VIIa on coagulopathic pigs with grade V liver injuries. J Trauma. 2002 Aug;53(2):252-7; discussion 257-9. PMID: 12169930
- 275. Kheirabadi BS, Field-Ridley A, Pearson R, MacPhee M, Drohan W, Tuthill D. Comparative study of the efficacy of the common topical hemostatic agents with fibrin sealant in a rabbit aortic anastomosis model. J Surg Res. 2002 Jul;106(1):99-107. PMID: 12127814
- 276. Kheirabadi BS, Pearson R, Tuthill D, Rudnicka K, Holcomb JB, Drohan W, MacPhee MJ. Comparative study of the hemostatic efficacy of a new human fibrin sealant: is an antifibrinolytic agent necessary?. J Trauma. 2002 Jun;52(6):1107-15. PMID: 12045638
- 277. Turner AS, Parker D, Egbert B, Maroney M, Armstrong R, Powers N. Evaluation of a novel hemostatic device in an ovine parenchymal organ bleeding model of normal and impaired hemostasis. J Biomed Mater Res. 2002;63(1):37-47. PMID: 11787027
- 278. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002 Feb;23(3):833-40. PMID: 11771703
- 279. Anema JG, Morey AF, Harris R, MacPhee M, Cornum RL. Potential uses of absorbable fibrin adhesive bandage for genitourinary trauma. World J Surg. 2001 Dec;25(12):1573-7. PMID: 11775194
- 280. Klobucar H, Delinar D, Korzinek M, Korzinek K. CMC external fixator. Acta Chir Orthop Traumatol Cech. 2001;68(1):55-8. PMID: 11706716

- 281. Ertel W, Keel M, Eid K, Platz A, Trentz O. Control of severe hemorrhage using C-clamp and pelvic packing in multiply injured patients with pelvic ring disruption. J Orthop Trauma. 2001 Sep-Oct;15(7):468-74. PMID: 11602828
- 282. Tyburski JG, Wilson RF, Dente C, Steffes C, Carlin AM. Factors affecting mortality rates in patients with abdominal vascular injuries. J Trauma. 2001 Jun;50(6):1020-6. PMID: 11426115
- 283. Edlich RF, Reddy VR. 5th Annual David R. Boyd, MD Lecture: revolutionary advances in wound repair in emergency medicine during the last three decades. A view toward the new millennium. J Emerg Med. 2001 Feb;20(2):167-93. PMID: 11207414
- 284. Djurickovic S, Snelling CFT, Boyle JC. Tourniquet and subcutaneous epinephrine reduce blood loss during burn excision and immediate autografting. J Burn Care Rehabil. 2001;22(1):1-5.
- 285. Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery. 2001 Nov;130(5):844-50. PMID: 11685194
- 286. Davis SC, Eaglstein WH, Cazzaniga AL, Mertz PM. An octyl-2-cyanoacrylate formulation speeds healing of partial-thickness wounds. Dermatol Surg. 2001 Sep;27(9):783-8. PMID: 11553164
- 287. Barbolt TA, Odin M, Leger M, Kangas L. Preclinical subdural tissue reaction and absorption study of absorbable hemostatic devices. Neurol Res. 2001 Jul;23(5):537-42. PMID: 11474811
- 288. Martinowitz U, Holcomb JB, Pusateri AE, Stein M, Onaca N, Freidman M, Macaitis JM, Castel D, Hedner U, Hess JR. Intravenous rFVIIa administered for hemorrhage control in hypothermic coagulopathic swine with grade V liver injuries. J Trauma. 2001 Apr;50(4):721-9. PMID: 11303171
- 289. Pusateri AE, Holcomb JB, Harris RA, MacPhee MJ, Charles NC, Beall LD, Hess JR. Effect of fibrin bandage fibrinogen concentration on blood loss after grade V liver injury in swine. Mil Med. 2001 Mar;166(3):217-22. PMID: 11263022

- 290. Morey AF, Anema JG, Harris R, Gresham V, Daniels R, Knight RW, Beall D, Macphee M, Cornum RL. Treatment of grade 4 renal stab wounds with absorbable fibrin adhesive bandage in a porcine model. J Urol. 2001 Mar;165(3):955-8. PMID: 11176521
- 291. Hill A, Estridge TD, Maroney M, Monnet E, Egbert B, Cruise G, Coker GT. Treatment of suture line bleeding with a novel synthetic surgical sealant in a canine iliac PTFE graft model. J Biomed Mater Res. 2001 May 1;58(3):308-12. PMID: 11319746
- 292. Clumpner BR, Polston RW, Kragh JF Jr, Westmoreland T, Harcke HT, Jones JA, Dubick MA, Baer DG, Blackbourne LH. Single versus double routing of the band in the combat application tourniquet. J Spec Oper Med. 2013;13(1):34-41. PMID: 23526320
- 293. Barlow BT, Kuhn KM. Limb salvage compared with amputation in the acute setting: criteria used on the battlefield. Curr Orthop Pract. 2013 Mar-Apr;24(2):153-7.
- 294. Sorensen B, Fries D. Emerging treatment strategies for trauma-induced coagulopathy. Br J Surg. 2012 Jan;99 Suppl 1:40-50. PMID: 22441854
- 295. Orman JA, Eastridge BJ, Baer DG, Gerhardt RT, Rasmussen TE, Blackbourne LH. The impact of 10 years of war on combat casualty care research: a citation analysis. J Trauma Acute Care Surg. 2012 Dec;73(6 Suppl 5):S403-8.
- 296. Brown KV, Guthrie HC, Ramasamy A, Kendrew JM, Clasper J. Modern military surgery: lessons from Iraq and Afghanistan. J Bone Joint Surg Br. 2012 Apr;94B(4):536-43.
- 297. Mamczak CN, Born CT, Obremskey WT, Dromsky DM, Extremity War Injuries VII Acute Care Panel. Evolution of acute orthopaedic care. J Am Acad Orthop Surg. 2012;20 Suppl 1:S70-3. PMID: 22865142
- 298. Rasmussen TE, Dubose JJ, Asensio JA, Feliciano DV, Fox CJ, Nunez TC, Sise MJ, Military Liaison Committee of the American Association for the Surgery of Trauma. Tourniquets, vascular shunts, and endovascular technologies: esoteric or essential? A report from the 2011 AAST Military Liaison Panel. J Trauma Acute Care Surg. 2012 Jul;73(1):282-5. PMID: 22743396
- 299. Jorgensen HO, Heier-Madsen K, Stokkebye JE. Casualty rates among Danish soldiers in Iraq and Afghanistan. J R Army Med Corps. 2012 Mar;158(1):10-3. PMID: 22545367

- 300. Mishwani AH, Ghaffar A, Janjua S. Combat related vascular trauma. J Coll Physicians Surg Pak. 2012 Apr;22(4):213-7. PMID: 22482375
- 301. Swan KG, Swan KG Jr, Ahearn M. Tourniquets, pressure points, and extremity hemorrhage. Mil Med. 2012 Jan;177(1):6-7. PMID: 22338970
- 302. Titley P. A topical subject. EBR Eur Biopharm Rev. 2012 Oct;(AUTUMN):56-60.
- 303. Kheirabadi BS, Terrazas IB, Williams JF, Hanson MA, Dubick MA, Blackbourne LH. Negative-pressure wound therapy: a hemostatic adjunct for control of coagulopathic hemorrhage in large soft tissue wounds. J Trauma Acute Care Surg. 2012 Nov;73(5):1188-94. PMID: 23117379
- 304. Pasquier P, Renner J, Merat S. Infections and tourniquet application in severe open tibia fractures from combat. J Trauma Acute Care Surg. 2012 Oct;73(4):1033. PMID: 23026921
- 305. Polk T, Sims C. Rollover car crash almost costs driver his life, limb. JEMS. 2012 Sep;37(9):30-1. PMID: 23342696
- 306. Jacobs N, Rourke K, Rutherford J, Hicks A, Smith SR, Templeton P, Adams SA, Jansen JO. Lower limb injuries caused by improvised explosive devices: proposed 'Bastion classification' and prospective validation. Injury. 2012 May 19:Epub ahead of print. PMID: 22613453
- 307. Francesko A, Tzanov T. Chitin, chitosan and derivatives for wound healing and tissue engineering. Adv Biochem Eng Biotechnol. 2011;125:1-27. PMID: 21072697
- 308. Parker P, Limb Trauma Working Group. Consensus statement on decision making in junctional trauma care. J R Army Med Corps. 2011 Sep;157(3 Suppl 1):S293-5. PMID: 22053391
- 309. King DR. Thirty consecutive uses of a hemostatic bandage at a US Army combat support hospital and forward surgical team in Operation Iraqi Freedom. J Trauma. 2011 Dec;71(6):1775-8. PMID: 22182888
- 310. Waibel KH, Haney B, Moore M, Whisman B, Gomez R. Safety of chitosan bandages in shellfish allergic patients. Mil Med. 2011 Oct;176(10):1153-6. PMID: 22128651
- 311. Rich NM. Vascular trauma historical notes. Perspect Vasc Surg Endovasc Ther. 2011 Mar;23(1):7-12. PMID: 21502112

- 312. Pohlemann T, Stengel D, Tosounidis G, Reilmann H, Stuby F, Stockle U, Seekamp A, Schmal H, Thannheimer A, Holmenschlager F, Gansslen A, Rommens PM, Fuchs T, Baumgartel F, Marintschev I, Krischak G, Wunder S, Tscherne H, Culemann U. Survival trends and predictors of mortality in severe pelvic trauma: estimates from the German Pelvic Trauma Registry Initiative. Injury. 2011 Oct;42(10):997-1002. PMID: 21513936
- 313. Metcalfe AJ, Davies K, Ramesh B, O'Kelly A, Rajagopal R. Haemorrhage control in pelvic fractures--a survey of surgical capabilities. Injury. 2011 Oct;42(10):1008-11. PMID: 21247559
- 314. Yin H, He H, Arbon P, Zhu J. A survey of the practice of nurses' skills in Wenchuan earthquake disaster sites: implications for disaster training. J Adv Nurs. 2011 Oct;67(10):2231-8. PMID: 21615462
- 315. Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011 Jul;9(7):857-79. PMID: 21810057
- 316. Tourtier JP, Jault P, Tazarourte K, Borne M, Bargues L. Tourniquets on the battlefield: could N-acetylcysteine be useful?. J Trauma. 2011 Jul;71(1):264. PMID: 21818040
- 317. Fox CJ, Perkins JG, Kragh JF Jr, Singh NN, Patel B, Ficke JR. Popliteal artery repair in massively transfused military trauma casualties: a pursuit to save life and limb. J Trauma. 2010 Jul;69 Suppl 1:S123-34. PMID: 20622606
- Crossley B. Tourniquet systems pose challenges. Biomed Instrum Technol. 2010 Jan-Feb;44(1):34-5. PMID: 20374118
- Katoch BR, Gambhir CRPS. Warfare vascular injuries. Med J Armed Forces India. 2010 Oct;66(4):338-341.
- Duncan NS, Moran C. (i) Initial resuscitation of the trauma victim. Orthop Trauma. 2010 Feb;24(1):1-8.
- Davenport R, Tai N, Walsh M. Vascular trauma. Surgery (Oxford). 2009 Aug;27(8):331-6.
- 322. Franco P. Alert--watch for "look alike" Combat Application Tourniquet (C.A.T.). J Spec Oper Med. 2009;9(2):136-7. PMID: 19813525

- 323. von Tersch R, Birch H, Gupta R, Tyner CF. Examining technologies to control hemorrhage by using modeling and simulation to simulate casualties and treatment. Mil Med. 2009 Feb;174(2):109-18. PMID: 19317189
- 324. Shipman N, Lessard CS. Pressure applied by the emergency/Israeli bandage. Mil Med. 2009 Jan;174(1):86-92. PMID: 19216303
- 325. Rush Jr RM, Beekley AC, Puttler EG, Kjorstad RJ. The mangled extremity. Curr Probl Surg. 2009 Nov;46(11):851-926.
- 326. Parker P. Emergency tourniquet use. Ann Surg. 2009 Sep;250(3):496-7. PMID: 19730182
- 327. Fludger S, Bell A. Tourniquet application in a rural Queensland HEMS environment. Air Med J. 2009 Nov-Dec;28(6):291-3. PMID: 19896580
- 328. Mullins J, Harrahill M. Use of a tourniquet after a gunshot wound to the thigh. J Emerg Nurs. 2009 Jun;35(3):265-7; quiz 271. Epub 2009 Mar 27. PMID: 19446140
- 329. Moore FA. Tourniquets: another adjunct in damage control? Ann Surg. 2009 Jan;249(1):8-9. PMID: 19106668
- 330. Fox CJ, Gillespie DL, Cox ED, Kragh JF Jr, Mehta SG, Salinas J, Holcomb JB. Damage control resuscitation for vascular surgery in a combat support hospital. J Trauma. 2008 Jul;65(1):1-9. PMID: 18580508
- 331. Gwinn DE, Keeling J, Froehner JW, McGuigan FX, Andersen R. Perioperative differences between bone bridging and nonbone bridging transtibial amputations for wartime lower extremity trauma. Foot Ankle Int. 2008 Aug;29(8):787-93. PMID: 18752776
- 332. Recinos G, Inaba K, Dubose J, Demetriades D, Rhee P. Local and systemic hemostatics in trauma: a review. Ulus Travma Acil Cerrahi Derg. 2008;14(3):175-81.
- 333. Blackbourne LH, Mabry R, Sebesta J, Holcomb JB. Joseph Lister, noncompressible arterial hemorrhage, and the next generation of "tourniquets"?. US Army Med Dept J. 2008 Jan-Mar:56-9. PMID: 20091974
- 334. Perkins JG, Cap AP, Weiss BM, Reid TJ, Bolan CD. Massive transfusion and nonsurgical hemostatic agents. Crit Care Med. 2008 Jul;36(7 Suppl):S325-39. PMID: 18594260
- 335. Mackenzie CF, Shander A. What to do if no blood is available but the patient is bleeding?. South Afr J Anaesth Analges. 2008 Jan-Feb;14(1):39-43.

- 336. Nelson TJ, Clark T, Stedje-Larsen ET, Lewis CT, Grueskin JM, Echols EL, Wall DB, Felger EA, Bohman HR. Close proximity blast injury patterns from improvised explosive devices in iraq: a report of 18 cases. J Trauma. J2008 Jul;65(1):212-7.
- 337. Fan Y, Sun H, Pei G, Ruan C. Haemostatic efficacy of an ethyl-2-cyanoacrylate-based aerosol in combination with tourniquet application in a large wound model with an arterial injury. Injury. 2008 Jan;39(1):61-6. PMID: 18155219
- 338. Li Z, Zhou G-H, Liu C, Mei Y-J, Ning Z-S, Lu S-M. A multifunctional tourniquet attachment system. J Clin Rehabil Tiss Eng Res. 2008 Feb 22;12(4):794-6.
- 339. Fox CJ, Starnes BW. Vascular surgery on the modern battlefield. Surg Clin North Am. 2007 Oct;87(5):1193-211. PMID: 17936482
- 340. Moorhouse I, Thurgood A, Walker N, Cooper B, Mahoney PF, Hodgetts TJ. A realistic model for catastrophic external haemorrhage training. J R Army Med Corps. 2007 Jun;153(2):99-101. PMID: 17896537
- Bulger EM, Maier RV. Prehospital care of the injured: what's new. Surg Clin North Am. 2007 Feb;87(1):37-53.
- 342. Kragh JF Jr, Baer DG, Walters TJ. Extended (16-hour) tourniquet application after combat wounds: a case report and review of the current literature. J Orthop Trauma. 2007 Apr:21(4):274-8. PMID: 17414556
- 343. McManus J, Hurtado T, Pusateri A, Knoop KJ. A case series describing thermal injury resulting from zeolite use for hemorrhage control in combat operations. Prehosp Emerg Care. 2007 Jan 1;11(1):67-71.
- 344. Laskowski-Jones L. First aid for bleeding wounds. Nursing. 2006 Sep;36(9):50-1. PMID: 16951621
- 345. Mucciarone JJ, Llewellyn CH, Wightman JM. Tactical combat casualty care in the assault on Punta Paitilla Airfield. Mil Med. 2006 Aug;171(8):687-90. PMID: 16933806
- 346. Esmarch F. Historical article. J Hand Surg [Br]. 2006 Aug;31(4):390-6.
- 347. Beekley AC. United States military surgical response to modern large-scale conflicts: the ongoing evolution of a trauma system. Surg Clin North Am. 2006 Jun;86(3):689-709.

- 348. Ostomel TA, Stoimenov PK, Holden PA, Alam HB, Stucky GD. Host-guest composites for induced hemostasis and therapeutic healing in traumatic injuries. J Thromb Thrombolysis. 2006 Aug;22(1):55-67. PMID: 16786234
- 349. Owens BD, Wenke JC, Svoboda SJ, White DW. Extremity trauma research in the United States Army. J Am Acad Orthop Surg. 2006;14(10 Spec No.):S37-40. PMID: 17003204
- 350. Walters TJ, Wenke JC, Greydanus DJ, Kauvar DS, Baer DG. Laboratory evaluation of battlefield tourniquets in human volunteers. Fort Sam Houston (TX): United States Army Institute of Surgical Research; 2005 Sep. 34 p.
- 351. Hodgetts TJ, Russell RJ, Mahoney PF, Russell MQ, Kenward G. Evaluation of clinician attitudes to the implementation of novel haemostatic techniques. J R Army Med Corps. 2005 Sep;151(3):176-8. PMID: 16440961
- 352. Holcomb JB. Methods for improved hemorrhage control. Crit Care. 2004 Jun;8 Suppl 2:S57-60. PMID: 15196327
- 353. Kulkarni R. Alternative and topical approaches to treating the massively bleeding patient. Clin Adv Hematol Oncol. 2004 Jul;2(7):428. PMID: 16163216
- 354. Guyver PM, Lambert AW. Vascular access on the front line. J Vasc Access Devices. 2004 Sep 21;9(3):142-4.
- 355. Gansslen A, Giannoudis P, Pape HC. Hemorrhage in pelvic fracture: who needs angiography?. Curr Opin Crit Care. 2003 Dec;9(6):515-23. PMID: 14639072
- 356. Porter K, Greaves I. Crush injury and crush syndrome: a consensus statement. Emerg Nurse. 2003 Oct;11(6):26-30. PMID: 14603647
- 357. Becker C. Bloodless coup. Funded by the Army, Oregon researchers turn to the sea to develop a revolutionary bandage that stanches heavy bleeding. Mod Healthc. 2003 Jul 14;33(28):30-1. PMID: 12884716
- 358. McEwen JA, Kelly DL, Jardanowski T, Inkpen K. Tourniquet safety in lower leg applications. Orthop Nurs. 2002 Sep-Oct;21(5):55-62. PMID: 12432700
- 359. Scalea T. What's new in trauma in the past 10 years. Int Anesthesiol Clin. 2002;40(3):1-17.
- 360. Strong DP, Edwards AT. Vascular trauma. Trauma. 2002;4(1):39-63.

- 361. Blackwood M. Royal Army Medical Corps, 3rd Corps Medical Society. Treatment of wounds from fire trench to field ambulance. 1916. J R Army Med Corps. 2001 Jun;147(2):230-5; discussion 229. PMID: 11469225
- 362. Rich NM, Rhee P. An historical tour of vascular injury management: from its inception to the new millennium. Surg Clin North Am. 2001;81(6):1199-1215.
- 363. Yong H, Jianning L. The design and the clinical application of the mini-tourniquet. Eur J Plastic Surg. 2001;24(2):100-1.
- 364. Sena MJ, Douglas G, Gerlach T, Grayson JK, Pichakron KO, Zierold D. A pilot study of the use of kaolin-impregnated gauze (Combat Gauze) for packing high-grade hepatic injuries in a hypothermic coagulopathic swine model. J Surg Res. 2013 Aug;183(2):704-9. Epub 2013 Mar 13. PMID: 23541814
- 365. Martin MJ. Editorial to accompany "A pilot study of the use of kaolin-impregnated gauze (Combat Gauze) for packing high-grade hepatic injuries in a hypothermic coagulopathic swine model (JSURGRES-D-12-01536R1). J Surg Res. 2013 Mar 22. pii: S0022-4804(13)00208-4. [Epub ahead of print]. PMID: 23535115
- 366. Floyd CT, Rothwell SW, Martin R, Risdahl J, Olson CE. A salmon thrombin-fibrinogen dressing controls hemorrhage in a swine model compared to standard kaolin-coated gauze. J Spec Oper Med. 2012 Spring;12(1):49-55. PMID: 22427049
- 367. Mueller GR, Pineda TJ, Xie HX, Teach JS, Barofsky AD, Schmid JR, Gregory KW. A novel sponge-based wound stasis dressing to treat lethal noncompressible hemorrhage. J Trauma Acute Care Surg. 2012 Aug;73(2 Suppl 1):S134-9. PMID: 22847084
- 368. De Castro GP, Dowling MB, Kilbourne M, Keledjian K, Driscoll IR, Raghavan SR, Hess JR, Scalea TM, Bochicchio GV. Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine. J Trauma Acute Care Surg. 2012 Apr;72(4):899-907. PMID: 22491602
- 369. Charbonneau S, Lemarie CA, Peng HT, Ganopolsky JG, Shek PN, Blostein MD. Surface-attached amphipathic peptides reduce hemorrhage in vivo. J Trauma Acute Care Surg. Jan 2012;72(1):136-42. PMID: 22027883

- Shukla A, Fang JC, Puranam S, Jensen FR, Hammond PT. Hemostatic multilayer coatings. Adv Mater. 2012 Jan 24;24(4):492-6. PMID: 22223363
- 371. Seetharaman S, Natesan S, Stowers RS, Mullens C, Baer DG, Suggs LJ, Christy RJ. A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity. Acta Biomater. 2011 Jul;7(7):2787-96. PMID: 21515420
- 372. Dowling MB, Kumar R, Keibler MA, Hess JR, Bochicchio GV, Raghavan SR. A selfassembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials. 2011 May;32(13):3351-7. PMID: 21296412
- 373. Bowman PD, Wang X, Meledeo MA, Dubick MA, Kheirabadi BS. Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages. J Trauma. 2011 Sep;71(3):727-732. PMID: 21768911
- 374. Hirst H, Brinkman J, Beasley A, Crocker R, O'Sullivan J. The effects of blood pressure on rebleeding when using ExcelArrest in a porcine model of lethal femoral injury. J Emerg Trauma Shock. 2011 Apr;4(2):207-11. PMID: 21769207
- 375. Naimer SA. New era of transparent compression to control bleeding from traumatic wounds: removing the blindfold. Clin Res Regul Affair. 2010 Sep;27(3):82-6.
- 376. Kranokpiraksa P, Pavcnik D, Kakizawa H, Uchida BT, Jeromel M, Keller FS, Rosch J. Hemostatic efficacy of chitosan-based bandage for closure of percutaneous arterial access sites: An experimental study in heparinized sheep model. Radiol Oncol. 2010 Jun 1;44(2):86-91.
- 377. Gegel BT, Burgert JM, Lockhart C, Austin R 3rd, Davila A, Deeds J, Hodges L, Hover A, Roy J, Simpson G, Weaver S, Wolfe W, Johnson D. Effects of Celox and TraumaDEX on hemorrhage control in a porcine model. AANA J. 2010 Apr;78(2):115-20. PMID: 20583456
- 378. Velmahos GC, Tabbara M, Spaniolas K, Duggan M, Alam HB, Serra M, Sun L, de Luis J. Self-expanding hemostatic polymer for control of exsanguinating extremity bleeding. J Trauma. 2009 Apr;66(4):984-8. PMID: 19359903

- 379. Li J, Yan W, Jing L, Xueyong L, Yuejun L, Wangzhou L, Shaozong C. Addition of an alginate to a modified zeolite improves hemostatic performance in a swine model of lethal groin injury. J Trauma. 2009 Mar;66(3):612-20. PMID: 19276728
- 380. Walters T, Baer DG, Kauvar DS. A large animal fatal extremity hemorrhage model and evaluation of a polymeric dressing (fatal extremity hemorrhage). J Trauma. 2006 Nov;61(5):1107-12. PMID: 17099515
- 381. Pusateri AE, Kheirabadi BS, Delgado AV, Doyle JW, Kanellos J, Uscilowicz JM, Martinez RS, Holcomb JB, Modrow HE. Structural design of the dry fibrin sealant dressing and its impact on the hemostatic efficacy of the product. J Biomed Mater Res B Appl Biomater. 2004 Jul 15;70(1):114-21. PMID: 15199591
- 382. Fischer TH, Connolly R, Thatte HS, Schwaitzberg SS. Comparison of structural and hemostatic properties of the poly-N-acetyl glucosamine Syvek Patch with products containing chitosan. Microsc Res Tech. 2004 Feb 15;63(3):168-74. PMID: 14755604
- 383. Jewelewicz DD, Cohn SM, Crookes BA, Proctor KG. Erratum to Modified rapid deployment hemostat bandage reduces blood loss and mortality in coagulopathic pigs with severe liver injury (J Trauma Inj Infect Crit Care 2003:55;275-281) J Trauma Inj Infect Crit Care. 2003 Oct;55(4):621.
- 384. Rothwell SW, Fudge JM, Reid TJ, Krishnamurti C. Epsilon-amino caproic acid additive decreases fibrin bandage performance in a swine arterial bleeding model. Thromb Res Suppl. 2002 Dec 15;108(5-6):341-5. PMID: 12676196
- 385. Rothwell SW, Fudge JM, Chen WK, Reid TJ, Krishnamurti C. Addition of a propyl gallatebased procoagulant to a fibrin bandage improves hemostatic performance in a swine arterial bleeding model. Thromb Res Suppl. 2002 Dec 15;108(5-6):335-40. PMID: 12676195
- 386. Gustafson SB, Fulkerson P, Bildfell R, Aguilera L, Hazzard TM. Chitosan dressing provides hemostasis in swine femoral arterial injury model. Prehosp Emerg Care. 2007 Apr-Jun;11(2):172-8. PMID: 17454803

- 387. Carraway JW, Kent D, Young K, Cole A, Friedman R, Ward KR. Comparison of a new mineral based hemostatic agent to a commercially available granular zeolite agent for hemostasis in a swine model of lethal extremity arterial hemorrhage. Resuscitation. 2008 Aug;78(2):230-5. PMID: 18485561
- 388. Zhang R, Shen L, Xie Y, Gen L, Li X, Ji Q. Effect of morphine-induced postconditioning in corrections of tetralogy of fallot. J Cardiothorac Surg. 2013 Apr 11;8(1):76. PMID: 23577699
- 389. MacIntyre AD, Quick JA, Barnes SL. Hemostatic dressings reduce tourniquet time while maintaining hemorrhage control. Am Surg. 2011 Feb;77(2):162-5. PMID: 21337872
- 390. Devlin JJ, Kircher S, Kozen BG, Littlejohn LF, Johnson AS. Comparison of ChitoFlex, CELOXTM, and QuikClot in control of hemorrhage. J Emerg Med. 2011 Sep;41(3):237-45. PMID: 19345045
- 391. Littlejohn LF, Devlin JJ, Kircher SS, Lueken R, Melia MR, Johnson AS. Comparison of Celox-A, ChitoFlex, WoundStat, and combat gauze hemostatic agents versus standard gauze dressing in control of hemorrhage in a swine model of penetrating trauma. Acad Emerg Med. 2011 Apr;18(4):340-50. PMID: 21496135
- 392. Watters JM, Van PY, Hamilton GJ, Sambasivan C, Differding JA, Schreiber MA. Advanced hemostatic dressings are not superior to gauze for care under fire scenarios. J Trauma. 2011 Jun;70(6):1413-9. PMID: 21817978
- 393. Kheirabadi BS, Mace JE, Terrazas IB, Fedyk CG, Valdez KK, MacPhee MJ, Beall D, Estep JS, Dubick MA, Blackbourne LH. Clotinducing minerals versus plasma protein dressing for topical treatment of external bleeding in the presence of coagulopathy. J Trauma. 2010 Nov;69(5):1062-72; discussion 1072-. PMID: 21068612
- 394. Kilbourne M, Keledjian K, Hess JR, Scalea T, Bochicchio GV. Hemostatic efficacy of modified amylopectin powder in a lethal porcine model of extremity arterial injury. Ann Emerg Med. 2009 Jun;53(6):804-10. PMID: 19321227
- 395. Connolly RJ. Application of the poly-N-acetyl glucosamine-derived rapid deployment hemostat trauma dressing in severe/lethal Swine hemorrhage trauma models. J Trauma. 2004 Jul;57(1 Suppl):S26-8. PMID: 15280747

- 396. Arnaud F, Parreno-Sadalan D, Tomori T, Delima MG, Teranishi K, Carr W, McNamee G, McKeague A, Govindaraj K, Beadling C, Lutz C, Sharp T, Mog S, Burris D, McCarron R. Comparison of 10 hemostatic dressings in a groin transection model in swine. J Trauma. 2009 Oct;67(4):848-55. PMID: 19820595
- 397. Arnaud F, Tomori T, Carr W, McKeague A, Teranishi K, Prusaczyk K, McCarron R. Exothermic reaction in zeolite hemostatic dressings: QuikClot ACS and ACS+. Ann Biomed Eng. 2008 Oct;36(10):1708-13. PMID: 18712606
- 398. Nowshad N, Saghafinia M, Panahi F, Bolandparvaz S, Tanideh N. Comparison of the efficacy of two local haemostatic agents. Trauma Monthly. 2011 Dec;16(4):188-90.
- 399. Burgert J, Gegel B, Neal AR, Kammer KE, Paul ME, Schwartz DJ, Loughren M, Johnson A. The effects of arterial blood pressure on rebleeding when BleedArrest, Celox and TraumaDex are used in a porcine model of lethal femoral injury. Mil Med. 2012 Mar;177(3):340-4. PMID: 22479924
- 400. Gegel B, Burgert J, Cooley B, MacGregor J, Myers J, Calder S, Luellen R, Loughren M, Johnson D. The effects of BleedArrest, Celox, and TraumaDex on hemorrhage control in a porcine model. J Surg Res. 2010 Nov;164(1):e125-9. PMID: 20863522
- 401. Gegel B, Burgert J, Loughren M, Johnson D. The effects of BleedArrest on hemorrhage control in a porcine model. US Army Med Dept J. 2012 Oct-Dec;:31-5. PMID: 23007934
- 402. Burgert JM, Gegel BT, Austin R 3rd, Davila A, Deeds J, Hodges L, Hover A, Lockhart C, Roy J, Simpson G, Weaver S, Wolfe W, Johnson D. Effects of arterial blood pressure on rebleeding using Celox and TraumaDEX in a porcine model of lethal femoral injury. AANA J. 2010 Jun;78(3):230-6. PMID: 20572410
- 403. Lyon M, Shiver SA, Greenfield EM, Reynolds BZ, Lerner EB, Wedmore IS, Schwartz RB. Use of a novel abdominal aortic tourniquet to reduce or eliminate flow in the common femoral artery in human subjects. J Trauma Acute Care Surg. 2012 Aug;73(2 Suppl 1):S103-5. PMID: 22847077
- 404. Koller H, Keil P, Seibert F. Individual and team training with first time users of the Pelvic C-Clamp: do they remember or will we need refresher trainings?. Arch Orthop Trauma Surg. 2013 Mar;133(3):343-9. PMID: 23229458

405. Koller H, Balogh ZJ. Single training session for first time pelvic C-clamp users: correct pin placement and frame assembly. Injury. 2012 Apr;43(4):436-9. PMID: 21733509

## Appendix A. Methods of Identifying the Literature

ECRI Institute information specialists searched the following databases for relevant information.

| Name                                                                                  | Date Limits       | Platform/Provider |
|---------------------------------------------------------------------------------------|-------------------|-------------------|
| Bibliographic Databases                                                               | •                 |                   |
| The Cochrane Central Register of Controlled Trials (CENTRAL)                          | 2001 through 2013 | Wiley             |
| The Cochrane Health Technology Assessment Database                                    | 2001 through 2013 | Wiley             |
| The Cochrane Database of Systematic Reviews (Cochrane Reviews)                        | 2001 through 2013 | Wiley             |
| Cochrane Database of Abstracts of Reviews of Effectiveness (DARE)                     | 2001 through 2013 | Wiley             |
| Cumulative Index of Nursing and Allied Health Literature (CINAHL)                     | 2001 through 2013 | EBSCOhost         |
| EMBASE (Excerpta Medica)                                                              | 2001 through 2013 | OVIDSP            |
| MEDLINE                                                                               | 2001 through 2013 | OVIDSP            |
| PUBMED (PreMEDLINE)                                                                   | 2013              | NLM               |
| U.K. National Health Service Economic Evaluation Database (NHS EED)                   | 2001 through 2013 | Wiley             |
| Gray Literature Resources                                                             |                   |                   |
| ClinicalTrials.gov                                                                    | Through 2013      | NIH               |
| ECRI Institute Library Catalog                                                        | 2001 through 2013 | ECRI Institute    |
| Health Devices                                                                        | 2001 through 2013 | ECRI Institute    |
| Healthcare Standards                                                                  | 2001 through 2013 | ECRI Institute    |
| Internet                                                                              | 2001 through 2013 | Google            |
| Manufacturer Web sites:                                                               | 2013              |                   |
| Medscape                                                                              | Through 2013      | WebMD             |
| National Guideline Clearinghouse (NGC)                                                | Through 2013      | AHRQ              |
| U.S. Food and Drug Administration (FDA), including Medical Device databases/Drugs@FDA | Through 2013      | FDA               |

#### Table A.1. Resources to be searched

### Hand Searches of Journal and Gray Literature

Journals and supplements maintained in ECRI Institute's collections were reviewed. Nonjournal publications and conference proceedings from professional organizations, private agencies, and government agencies were also be screened. Other mechanisms used to retrieve additional relevant information include review of bibliographies/reference lists from peerreviewed and gray literature. (Gray literature consists of reports, studies, articles, and monographs produced by Federal and local government agencies, private organizations, educational facilities, consulting firms, and corporations. These documents do not appear in the peer-reviewed journal literature.)

### **Topic-specific Search Terms**

The search strategies employ combinations of free-text keywords as well as controlled vocabulary terms including, but not limited to, the following concepts. Strategies for EMBASE and MEDLINE bibliographic database follow this table.

| Concept              | Controlled Vocabulary              | Keywords                                |
|----------------------|------------------------------------|-----------------------------------------|
| Pre-hospital         | MEDLINE (MeSH)                     | accident\$                              |
| emergency setting or | accidents/                         | ((afghan OR Afghanistan OR Iraq\$) and  |
| population (combat,  | accidents, traffic/                | (war or conflict))                      |
| disaster, venicie    | disasters/                         | air force                               |
| responders)          | advanced trauma life support care/ | ambulance\$                             |
|                      | emergency medical services/        | armed forces                            |
|                      | exp emergency responders/          | army                                    |
|                      | exp emergency treatment/           | battle\$                                |
|                      | emergencies/                       | ((car OR auto OR automobile OR vehicle) |
|                      | field hospitals/                   | adj2 (crash\$ or accident\$))           |
|                      | military medicine/                 | casualt\$                               |
|                      | triage/                            | "care under fire"                       |
|                      | military personnel/                | combat                                  |
|                      | war/                               | disaster\$                              |
|                      | veterans/                          | emergency medical services              |
|                      | veterans health/                   | EMT                                     |
|                      | EMBASE (EMTREE)                    | emergency medical technician\$          |
|                      | exp accident/                      | emergency responder\$                   |
|                      | air force/                         | "in the field"                          |
|                      | ambulance/                         | "field triage"                          |
|                      | army/                              | firefight\$                             |
|                      | disaster medicine/                 | first responder\$                       |
|                      | exp emergency care/                | "Iraq war"                              |
|                      | emergency health service/          | "Iraqi freedom"                         |
|                      | exp emergency treatment/           | life support                            |
|                      | field hospital/                    | marines                                 |
|                      | military medicine/                 | medic                                   |
|                      | navy/                              | medics                                  |
|                      | rescue personnel/                  | military                                |
|                      | soldier/                           | naval                                   |
|                      | traffic accident/                  | navy                                    |
|                      | veteran/                           | "pre hospital"                          |
|                      | veterans health/                   | "pre-hospital"                          |
|                      | exp war/                           | "prehospital"                           |
|                      | CINAHL                             | police\$                                |
|                      | MH "accidents, traffic"            | rescue                                  |
|                      | MH "Aeromedical Transport"         | soldier\$                               |
|                      | MH "Ambulances"                    | "tactical combat casualty care"         |
|                      | MH "Emergency Medical Services+"   | trauma                                  |
|                      | MH "Emergency Service+"            | triage                                  |
|                      | MH "Emergency Patients"            | veteran\$                               |
|                      | MH "War+"                          | victim                                  |
|                      | MH "Hospitals, Military"           | victims                                 |
|                      | MH "Military Medicine"             | war                                     |
|                      | MH "Military Personnel+"           |                                         |

 Table A.2.
 Medical Subject Headings (MeSH), EMTREE, CINAHL, and keywords\*

| Concept    | Controlled Vocabulary      | Keywords                         |
|------------|----------------------------|----------------------------------|
|            | MH "Military Services+"    |                                  |
|            | MH "Military Nursing"      |                                  |
|            | MH "Veterans+"             |                                  |
|            | MH "Victims"               |                                  |
|            | MH "Disasters+"            |                                  |
|            | MH "Police"                |                                  |
|            | MH "Firefighters"          |                                  |
|            | MH "Prehospital Care"      |                                  |
| Hemorrhage | MEDLINE (MESH)             | bleed\$                          |
|            | blast injuries/            | exsanguinat\$                    |
|            | exp hemorrhage/            | haemorrhag\$                     |
|            | lacerations/               | hemorrhag\$                      |
|            | multiple trauma/           | iniurv                           |
|            | exp Wounds and injuries/   | iniuries                         |
|            | wounds, penetrating/       | injured                          |
|            | wounds stab/               | wound\$                          |
|            | wounds gunshot/            | gunshot\$                        |
|            |                            | lacerats                         |
|            | Exp bleeding/              |                                  |
|            | expiniury                  |                                  |
|            | perforation/               |                                  |
|            | penetrating trauma/        |                                  |
|            | stab wound/                |                                  |
|            | gunshot injury/            |                                  |
|            | crush trauma/              |                                  |
|            | laceration/                |                                  |
|            | CINAHI                     |                                  |
|            | MH "Hemorrhage+"           |                                  |
|            | MH "Troumo+"               |                                  |
|            | MH "Wounds and Injurios+"  |                                  |
|            | MH "Wounds and injunes+    |                                  |
|            | MH wounds, penetrating     |                                  |
|            | MH wounds, stab            |                                  |
|            | MH wounds, gunshol         |                                  |
|            | WH "tears and lacerations" |                                  |
|            | MH "multiple trauma"       |                                  |
| Tourniquet | MEDLINE (MESH)             | "combat application tourniquet"  |
|            | tourniquets/               | "compat application tourniquets" |
|            | EMBASE (EMTREE)            | combat ready clamp               |
|            | tourniquet/                | "iunctional homorrhage control"  |
|            | CINAHL                     | Junctional hemormage control     |
|            | MH "Tourniquets"           | "SOFTT"                          |
|            |                            | "SOF tactical tourniquet"        |
|            |                            | "soft t"                         |
|            |                            | "soft-t"                         |
|            |                            | "sof t"                          |
|            |                            | "sof-t"                          |
|            |                            | "TK4"                            |
|            |                            | "TK-4"                           |
|            |                            | "TK 4"                           |
|            |                            | " I ourni kwik"                  |
|            |                            | "tourni-kwik"                    |
|            |                            | tourniquet                       |

| Concept              | Controlled Vocabulary          | Keywords                             |
|----------------------|--------------------------------|--------------------------------------|
| Dressings            | MEDLINE (MESH)                 | bandag\$                             |
|                      | Exp bandages/                  | dressing\$                           |
|                      | EMBASE (EMTREE)                | gauze\$                              |
|                      | exp "bandages and dressings"/  | sponge                               |
|                      | CINAHL                         | sponges                              |
|                      | MH "Bandages and Dressings+"   | tape                                 |
|                      | MH "Tapes+"                    | tapes                                |
|                      |                                | taping                               |
| Hemostasis           | MEDLINE (MESH)                 | chitosan                             |
|                      | exp blood coagulation factors/ | chito\$                              |
|                      | fibrin tissue adhesive/        | clot                                 |
|                      | exp hemostasis/                | clotting                             |
|                      | exp hemostatics/               | clots                                |
|                      | exp hemostatic techniques      | coagulat\$                           |
|                      | EMBASE (EMTREE)                | fibrinolysis                         |
|                      | exp blood clotting/            | (fibrin AND (seal OR adhesive))      |
|                      | Exp hemostatic agent/          | hemostas\$                           |
|                      | hemostasis/                    | hemostat\$                           |
|                      | CINAHL                         | stasis                               |
|                      | MH "Hemostasis+"               | staunch\$                            |
|                      | MH "Hemostatics+"              |                                      |
| Hemostatic Dressings |                                | BioHemostat                          |
| (product names)      |                                | CELOX\$                              |
|                      |                                | "Combat Gauze"                       |
|                      |                                | Chitogauze                           |
|                      |                                | "chito gauze"                        |
|                      |                                | HemCon                               |
|                      |                                | "modified rapid deployment hemostat" |
|                      |                                | "MRDH"                               |
|                      |                                | QuikCLot                             |
|                      |                                | TraumaDEX                            |
|                      |                                | Woundstat                            |

\*Exp or + = "explodes" controlled vocabulary term (e.g., expands search to all more specific related terms in the vocabulary's hierarchy)

/ or MH = denotes a controlled subject heading

\$ = truncation

## Search Strategy

| Set # | Concept                                                                                | Search Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Prehospital<br>(emergency,<br>combat,<br>disaster,<br>trauma) –<br>Controlled<br>Terms | accidents/ OR accidents, traffic/ OR disasters/ OR advanced trauma life support care/<br>OR emergency medical services/ OR exp emergency responders/ OR exp emergency<br>treatment/ OR emergencies/ OR field hospitals/ OR military medicine/ OR triage/ OR<br>military personnel/ OR war/ OR veterans/ OR veterans health/ OR exp accident/ OR air<br>force/ OR ambulance/ OR army/ OR disaster medicine/ OR exp emergency care/ OR<br>emergency health service/ OR exp emergency treatment/ OR field hospital/ OR military<br>medicine/ OR navy/ OR rescue personnel/ OR soldier/ OR traffic accident/ OR veteran/<br>OR veterans health/ OR exp war/                                                                                                                         |
| 2     | Prehospital<br>(emergency,<br>combat,<br>disaster,<br>trauma) –<br>keywords            | accident\$ OR ((afghan OR Afghanistan OR Iraq\$) and (war or conflict)) OR air force OR<br>ambulance\$ OR armed forces OR army OR battle\$ OR ((car OR auto OR automobile<br>OR vehicle) adj2 (crash\$ or accident\$)) OR casualt\$ OR "care under fire" OR combat<br>OR disaster\$ OR emergency medical services OR EMT OR emergency medical<br>technician\$ OR emergency responder\$ OR "in the field" OR "field triage" OR firefight\$<br>OR first responder\$ OR "Iraq war" OR "Iraqi freedom" OR life support OR marines OR<br>medic OR medics OR military OR naval OR navy OR "pre hospital" OR "pre-hospital"<br>OR "prehospital" OR police\$ OR rescue OR soldier\$ OR "tactical combat casuality<br>care" OR trauma OR triage OR veteran\$ OR victim OR victims OR war |
| 3     | Combine sets –<br>prehospital<br>setting                                               | 1 OR 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4     | Hemorrhage<br>(due to injury) –<br>Controlled<br>terms                                 | blast injuries/ OR exp hemorrhage/ OR lacerations/ OR multiple trauma/ OR exp<br>Wounds and injuries/ OR wounds, penetrating/ OR wounds, stab/ OR wounds, gunshot/<br>OR Exp bleeding/ OR exp injury OR perforation/ OR penetrating trauma/ OR stab<br>wound/ OR gunshot injury/ OR crush trauma/ OR laceration/                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5     | Hemorrhage<br>(due to injury) –<br>Keywords                                            | bleed\$ OR exsanguinat\$ OR haemorrhag\$ OR hemorrhag\$ OR injury OR injuries OR injured OR wound\$ OR gunshot\$ OR lacerat\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6     | Combine sets -<br>Hemorrhage                                                           | 4 OR 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7     | Tourniquets -<br>controlled terms<br>and keywords                                      | tourniquets/ OR tourniquet/ OR "combat application tourniquet" OR "combat application tourniquets" OR "combat ready clamp" OR "croc" OR "junctional hemorrhage control" OR clamp* OR "SOFTT" OR "SOF tactical tourniquet" OR "soft t" OR "soft-t" OR "soft t" OR "soft t" OR "soft-t" OR "tourni-kwik" OR "tourni-kwik" OR tourniquet\$                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8     | Hemostatic<br>dressings –<br>controlled terms<br>and keywords                          | (exp bandages/ OR exp "bandages and dressings"/ OR bandag\$ OR dressing\$ OR<br>gauze\$ OR tape OR tapes OR taping OR sponge OR sponges) AND (exp hemostasis/<br>OR exp hemostatics/ OR exp hemostatic techniques OR fibrin tissue adhesive/ OR exp<br>blood coagulation factors/ OR exp hemostatic agent/ OR exp blood clotting/ OR<br>chitosan OR chito\$ OR clot OR clotting OR clots OR coagulat\$ OR fibrinolysis OR<br>(fibrin AND (seal OR adhesive)) OR hemostat\$ OR hemostas\$ OR stasis OR staunch\$)                                                                                                                                                                                                                                                                |
| 9     | Hemostatic<br>dressings –<br>product names                                             | BioHemostat OR celox\$ OR "Combat Gauze" OR Chitogauze OR "chito gauze" OR HemCon OR "modified rapid deployment hemostat" OR "MRDH" OR quikclot OR traumadex OR woundstat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10    | Combine sets -<br>Hemostatic<br>dressings                                              | 8 OR 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11    | Combine sets                                                                           | 3 AND 6 AND (7 OR 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12    | Limit to English<br>language                                                           | Limit 11 to English language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13    | Limit to publication year                                                              | Limit 12 to yr="2001-Current"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

 Table A.3.
 Embase/MEDLINE (presented in OVID syntax)

| Set # | Concept                                     | Search Statement                                                                                                                                                                                                                                                                                                                                   |
|-------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14    | Exclude<br>unwanted<br>publication<br>types | 13 NOT (book/ OR edited book/ OR case report/ OR case reports/ OR comment/ OR conference abstract/ OR conference paper/ OR conference review/ OR editorial/ OR letter/ OR news/ OR note/ OR proceeding/ OR (book OR edited book OR case report OR case reports OR comment OR conference OR editorial OR letter OR news OR note OR proceeding).pt.) |
|       |                                             | Additional terms were added as necessary to restrict retrieval to specific study designs (human, animal, controlled trials, systematic reviews, guidelines, etc.)                                                                                                                                                                                  |

#### **OVID SYNTAX**

\$ or \* = truncation character (wildcard)

- ADJn = search terms within a specified number (*n*) of words from each other in any order
- / = search as a subject heading (note that terms preceded by an asterisk are searched as a major subject headings)
- exp = "explodes" controlled vocabulary term (e.g., expands search to all more specific related terms in the vocabulary's hierarchy)
- .de. = limit controlled vocabulary heading

.fs. = floating subheading

- .hw. = limit to heading word
- .mp. = combined search fields (default if no fields are specified)
- .pt. = publication type
- .ti. = limit to title
- .tw. = limit to title and abstract fields

# **Appendix B. Excluded Articles**

| Reference | Year of<br>Publication | Authors                                                                                                                                     | Title of Article                                                                                                                                                                                                                |
|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 102       | 2013                   | Zentai, C., Grottke, O., Spahn,<br>D. R., and Rossaint, R.                                                                                  | Nonsurgical Techniques to Control Massive Bleeding                                                                                                                                                                              |
| 103       | 2013                   | Moriwaki, Y., Toyoda, H.,<br>Harunari, N., Iwashita, M.,<br>Kosuge, T., Arata, S., and<br>Suzuki, N.                                        | Gauze packing as damage control for<br>uncontrollable haemorrhage in severe thoracic<br>trauma                                                                                                                                  |
| 104       | 2013                   | Fitzpatrick, G. M., Cliff, R., and Tandon, N.                                                                                               | Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage                                                                                                                                     |
| 105       | 2013                   | Riha, G. A. and Schreiber,<br>M. A.                                                                                                         | Update and new developments in the management of the exsanguinating patient                                                                                                                                                     |
| 106       | 2013                   | Adkins, C. L.                                                                                                                               | Wound care dressings and choices for care of<br>wounds in the home                                                                                                                                                              |
| 107       | 2013                   | Abrassart, S., Stern, R., and<br>Peter, R.                                                                                                  | Unstable pelvic ring injury with hemodynamic<br>instability: what seems the best procedure choice<br>and sequence in the initial management                                                                                     |
| 108       | 2013                   | Inaba, K., Branco, B. C., Rhee,<br>P., Putty, B., Okoye, O.,<br>Barmparas, G., Talving, P.,<br>and Demetriades, D.                          | Long-term preclinical evaluation of the<br>intracorporeal use of advanced local hemostatics in<br>a damage-control swine model of grade IV liver<br>injury                                                                      |
| 109       | 2013                   | Phaneuf, M. D., Bide, M. J.,<br>Hannel, S. L., Platek, M. J.,<br>Monahan, T. S., Contreras, M.<br>A., Phaneuf, T. M., and<br>LoGerfo, F. W. | Development of an infection-resistant, bioactive wound dressing surface                                                                                                                                                         |
| 110       | 2013                   | Nitecki, S. S., Karram, T., Ofer,<br>A., Engel, A., and Hoffman, A.                                                                         | Management of combat vascular injuries using modern imaging: Are we getting better?                                                                                                                                             |
| 111       | 2013                   | Muthukumar, T., Senthil, R., and Sastry, T. P.                                                                                              | Synthesis and characterization of biosheet<br>impregnated with Macrotyloma uniflorum extract for<br>burn/wound dressings                                                                                                        |
| 112       | 2013                   | Sellei, R. M., Schandelmaier,<br>P., Kobbe, P., Knobe, M., and<br>Pape, H. C.                                                               | Can a Modified Anterior External Fixator Provide<br>Posterior Compression of AP Compression Type III<br>Pelvic Injuries                                                                                                         |
| 113       | 2013                   | Carr, D., Kieser, J., Mabbott,<br>A., Mott, C., Champion, S., and<br>Girvan, E.                                                             | Damage to apparel layers and underlying tissue due to hand-gun bullets                                                                                                                                                          |
| 114       | 2013                   | Metsemakers, W. J.,<br>Vanderschot, P., Jennes, E.,<br>Nijs, S., Heye, S., and Maleux,<br>G.                                                | Transcatheter embolotherapy after external<br>surgical stabilization is a valuable treatment<br>algorithm for patients with persistent haemorrhage<br>from unstable pelvic fractures: Outcomes of a<br>single centre experience |
| 115       | 2013                   | Boonkong, W., Petsom, A., and Thongchul, N.                                                                                                 | Rapidly stopping hemorrhage by enhancing blood<br>clotting at an opened wound using<br>chitosan/polylactic acid/polycaprolactone wound<br>dressing device                                                                       |
| 116       | 2013                   | Wu, J., Lemarie, C. A.,<br>Barralet, J., and Blostein, M. D.                                                                                | Amphiphilic peptide-loaded nanofibrous calcium phosphate microspheres promote hemostasis in vivo                                                                                                                                |
| 117       | 2012                   | Pavic, R. and Margetic, P.                                                                                                                  | Emergency treatment for clinically unstable patients with pelvic fracture and haemorrhage                                                                                                                                       |
| 118       | 2012                   | Gansslen, A., Hildebrand, F., and Pohlemann, T.                                                                                             | Management of hemodynamic unstable patients "in extremis" with pelvic ring fractures                                                                                                                                            |

 Table B.1. Articles excluded at the abstract level

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                 | Title of Article                                                                                                                                  |
|-----------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 119       | 2012                   | Hauschild, O., Aghayev, E.,<br>von, Heyden J., Strohm, P. C.,<br>Culemann, U., Pohlemann, T.,<br>Suedkamp, N. P., and Schmal,<br>H.                                                     | Angioembolization for pelvic hemorrhage control:<br>results from the German pelvic injury register                                                |
| 120       | 2012                   | Pohlemann, T., Culemann, U., and Holstein, J. H.                                                                                                                                        | Initial experience using a pelvic emergency<br>simulator to train reduction in blood loss                                                         |
| 121       | 2012                   | Daruwalla, Z. J., Rowan, F.,<br>Finnegan, M., Fennell, J., and<br>Neligan, M.                                                                                                           | Exsanguinators and tourniquets: do we need to change our practice?                                                                                |
| 122       | 2012                   | Percival, T. J. and Rasmussen, T. E.                                                                                                                                                    | Reperfusion strategies in the management of<br>extremity vascular injury with ischaemia                                                           |
| 123       | 2012                   | Gruen, R. L., Brohi, K.,<br>Schreiber, M., Balogh, Z. J.,<br>Pitt, V., Narayan, M., and<br>Maier, R. V.                                                                                 | Haemorrhage control in severely injured patients                                                                                                  |
| 124       | 2012                   | Palmier, B.                                                                                                                                                                             | [Conditions for the survival of combat casualties in<br>overseas operations: procedure and experience<br>from the Afghan out-of-hospital theater] |
| 125       | 2012                   | Travers, S., Dubourg, O.,<br>Ribeiro, Parenti L., Lefort, H.,<br>Albarello, S., and Domanski, L.                                                                                        | [Prehospital use of haemostatic dressing QuikClot<br>ACS+ for hemorrhage control of a perineal trauma]                                            |
| 126       | 2012                   | Yang, J. H., Lim, H., Yoon, J.<br>R., and Jeong, H. I.                                                                                                                                  | Tourniquet associated chemical burn                                                                                                               |
| 127       | 2012                   | Du, L., Tong, L., Jin, Y., Jia, J.,<br>Liu, Y., Su, C., Yu, S., and Li,<br>X.                                                                                                           | A multifunctional in situ-forming hydrogel for wound healing                                                                                      |
| 128       | 2012                   | Hu, G., Xiao, L., Tong, P., Bi,<br>D., Wang, H., Ma, H., Zhu, G.,<br>and Liu, H.                                                                                                        | Antibacterial hemostatic dressings with<br>nanoporous bioglass containing silver                                                                  |
| 129       | 2012                   | Morrison, J. J., Percival, T. J.,<br>Markov, N. P., Villamaria, C.,<br>Scott, D. J., Saches, K. A.,<br>Spencer, J. R., and<br>Rasmussen, T. E.                                          | Aortic balloon occlusion is effective in controlling pelvic hemorrhage                                                                            |
| 130       | 2012                   | Korkmaz, T., Sarikas, N. G.,<br>Kilicgun, A., Serin, E., and<br>Boran, C.                                                                                                               | The mechanism of activity of ankaferd blood<br>stopper in the control of arterial bleeding and in the<br>process of wound healing                 |
| 127       | 2012                   | Du, L., Tong, L., Jin, Y., Jia, J.,<br>Liu, Y., Su, C., Yu, S., and Li,<br>X.                                                                                                           | A multifunctional in situforming hydrogel for wound healing                                                                                       |
| 131       | 2012                   | Xie, H., Lucchesi, L., Teach, J.<br>S., and Virmani, R.                                                                                                                                 | Long-term outcomes of a chitosan hemostatic<br>dressing in laparoscopic partial nephrectomy                                                       |
| 132       | 2012                   | Shoffstall, A. J., Atkins, K. T.,<br>Groynom, R. E., Varley, M. E.,<br>Everhart, L. M., Lashof-<br>Sullivan, M. M., Martyn-Dow,<br>B., Butler, R. S., Ustin, J. S.,<br>and Lavik, E. B. | Intravenous hemostatic nanoparticles increase survival following blunt trauma injury                                                              |
| 133       | 2011                   | Hansen, A., McMillan, L.,<br>Morrison, A., Petrik, J., and<br>Bradley, M.                                                                                                               | Polymers for the rapid and effective activation and aggregation of platelets                                                                      |
| 134       | 2011                   | Wigginton, J. G., Roppolo, L., and Pepe, P. E.                                                                                                                                          | Advances in resuscitative trauma care                                                                                                             |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                    | Title of Article                                                                                                                                                            |
|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 135       | 2011                   | Rtshiladze, M. A., Andersen, S.<br>P., Nguyen, D. Q., Grabs, A.,<br>and Ho, K.                                                             | The 2009 Sydney shark attacks: case series and literature review                                                                                                            |
| 136       | 2011                   | Kubiak, B. D., Albert, S. P.,<br>Gatto, L. A., Vieau, C. J., Roy,<br>S. K., Snyder, K. P., Maier, K.<br>G., and Nieman, G. F.              | A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury                                                            |
| 137       | 2011                   | Clamp, J. A. and Moran, C. G.                                                                                                              | Haemorrhage control in pelvic trauma                                                                                                                                        |
| 138       | 2011                   | Lustenberger, T., Meier, C.,<br>Benninger, E., Lenzlinger, P.<br>M., and Keel, M. J.                                                       | C-clamp and pelvic packing for control of hemorrhage in patients with pelvic ring disruption                                                                                |
| 139       | 2011                   | Razavi, S., Ardakani, H. Z.,<br>Rajai, S., Hollisaz, M.,<br>Sadeghipoor, H., Farshad, A.,<br>Shojaeezadeh, D., and Khodai,<br>G.           | Trends in Prevalent Injuries among Iranian Pilgrims<br>in Hajj                                                                                                              |
| 140       | 2011                   | Dregelid, E. B. and Pedersen,<br>G.                                                                                                        | Treatment of major vein injury with the hemostatic fleece TachoSil by interposing a peritoneal patch to avoid vein thrombosis: A feasibility study in pigs                  |
| 141       | 2011                   | Valentine, R., Boase, S.,<br>Jervis-Bardy, J., Dones Cabral,<br>J. D., Robinson, S., and<br>Wormald, P. J.                                 | The efficacy of hemostatic techniques in the sheep model of carotid artery injury                                                                                           |
| 142       | 2011                   | Inaba, K., Rhee, P., Teixeira,<br>P. G., Barmparas, G., Putty, B.,<br>Branco, B. C., Cohn, S., and<br>Demetriades, D.                      | Intracorporeal use of advanced local hemostatics<br>in a damage control swine model of grade IV liver<br>injury                                                             |
| 143       | 2011                   | White, J. M., Cannon, J. W.,<br>Stannard, A., Burkhardt, G. E.,<br>Spencer, J. R., Williams, K.,<br>Oh, J. S., and Rasmussen,<br>T. E.     | Direct vascular control results in less physiologic<br>derangement than proximal aortic clamping in a<br>porcine model of noncompressible extrathoracic<br>torso hemorrhage |
| 144       | 2011                   | Grottke, O., Braunschweig, T.,<br>Daheim, N., Coburn, M., Grieb,<br>G., Rossaint, R., and Tolba, R.                                        | Effect of TachoSil in a coagulopathic pig model with blunt liver injuries                                                                                                   |
| 145       | 2011                   | De Castro, G. P., MacPhee, M.<br>J., Driscoll, I. R., Beall, D., Hsu,<br>J., Zhu, S., Hess, J. R., Scalea,<br>T. M., and Bochicchio, G. V. | New hemostatic dressing (FAST Dressing) reduces<br>blood loss and improves survival in a grade V liver<br>injury model in noncoagulopathic swine                            |
| 146       | 2011                   | White, J. M., Cannon, J. W.,<br>Stannard, A., Spencer, J. R.,<br>Hancock, H., Williams, K., Oh,<br>J. S., and Rasmussen, T. E.             | A porcine model for evaluating the management of noncompressible torso hemorrhage                                                                                           |
| 147       | 2011                   | Schnuriger, B., Inaba, K.,<br>Barmparas, G., Rhee, P.,<br>Putty, B., Branco, B. C.,<br>Talving, P., and Demetriades,<br>D.                 | A new survivable damage control model including hypothermia, hemodilution, and liver injury                                                                                 |
| 148       | 2011                   | Spector, D., Perry, Z.,<br>Konobeck, T., Mooradian, D.,<br>and Shikora, S.                                                                 | Comparison of hemostatic properties between<br>collagen and synthetic buttress materials used in<br>staple line reinforcement in a swine splenic<br>hemorrhage model        |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                                                                                                       | Title of Article                                                                                                                               |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 149       | 2011                   | Pick, D. L., Kolla, S. B.,<br>Mucksavage, P., Louie, M. K.,<br>Sountoulides, P., Kaufmann,<br>O., Olamendi, S., Kaplan, A.,<br>Huynh, V., Ortiz-Vanderdys,<br>C., Truong, H. P., Said, S. A.,<br>Andrade, L., Tongson-Ignacio,<br>J., McDougall, E. M., and<br>Clayman, R. V. | Sprayed fibrin sealant as the sole hemostatic agent<br>for porcine laparoscopic partial nephrectomy                                            |
| 150       | 2011                   | Anilkumar, T. V., Muhamed, J.,<br>Jose, A., Jyothi, A., Mohanan,<br>P. V., and Krishnan, L. K.                                                                                                                                                                                | Advantages of hyaluronic acid as a component of fibrin sheet for care of acute wound                                                           |
| 151       | 2011                   | Hutchinson, R. W., Broughton,<br>D., Barbolt, T. A., Poandl, T.,<br>Muench, T., Rockar, R.,<br>Johnson, M., and Hart, J.                                                                                                                                                      | Hemostatic effectiveness of Fibrin pad after partial nephrectomy in swine                                                                      |
| 152       | 2011                   | Lu, CR., Chen, L., Chen, W<br>B., Dou, CQ., Liu, R., and<br>Huang, ZQ.                                                                                                                                                                                                        | Absorbable bandage wrapping in treatment of severe blast liver injury: A miniature swine model                                                 |
| 153       | 2010                   | Jagodzinski, N. A.,<br>Weerasinghe, C., and Porter,<br>K.                                                                                                                                                                                                                     | Crush injuries and crush syndrome - A review. Part<br>1: The systemic injury                                                                   |
| 154       | 2010                   | Williams-Johnson, J., Williams,<br>E., and Watson, H.                                                                                                                                                                                                                         | Management and Treatment of Pelvic and Hip<br>Injuries                                                                                         |
| 155       | 2010                   | Feliciano, D. V.                                                                                                                                                                                                                                                              | Management of peripheral arterial injury                                                                                                       |
| 156       | 2010                   | Kheirabadi, B. S., Mace, J. E.,<br>Terrazas, I. B., Fedyk, C. G.,<br>Estep, J. S., Dubick, M. A., and<br>Blackbourne, L. H.                                                                                                                                                   | Safety evaluation of new hemostatic agents,<br>smectite granules, and kaolin-coated gauze in a<br>vascular injury wound model in swine         |
| 157       | 2010                   | Estrera, A. L., Gochnour, D. C.,<br>Azizzadeh, A., Miller, C. C., III,<br>Coogan, S., Charlton-Ouw, K.,<br>Holcomb, J. B., and Safi, H. J.                                                                                                                                    | Progress in the treatment of blunt thoracic aortic injury: 12-year single-institution experience                                               |
| 158       | 2010                   | Pollak, A. N., Powell, E. T.,<br>Fang, R., Cooper, E. O., Ficke,<br>J. R., and Flaherty, S. F.                                                                                                                                                                                | Use of negative pressure wound therapy during aeromedical evacuation of patients with combat-<br>related blast injuries                        |
| 159       | 2010                   |                                                                                                                                                                                                                                                                               | Silver dressings - Do they work?                                                                                                               |
| 160       | 2010                   | Sinha, C. V. K. and Anand, L.<br>C. S.                                                                                                                                                                                                                                        | Extremity and orthopaedic injuries                                                                                                             |
| 161       | 2010                   | Dubose, J., Inaba, K.,<br>Barmparas, G., Teixeira, P. G.,<br>Schnuriger, B., Talving, P.,<br>Salim, A., and Demetriades, D.                                                                                                                                                   | Bilateral internal iliac artery ligation as a damage<br>control approach in massive retroperitoneal<br>bleeding after pelvic fracture          |
| 162       | 2010                   | Khashayar, P., Amoli, H. A.,<br>Tavakoli, H., and Panahi, F.                                                                                                                                                                                                                  | Efficacy of prehospital care in trauma patients in Iran                                                                                        |
| 163       | 2010                   | Mylankal, K. J. and Wyatt, M. G.                                                                                                                                                                                                                                              | Control of major haemorrhage                                                                                                                   |
| 164       | 2010                   | Peng, H. T. and Shek, P. N.                                                                                                                                                                                                                                                   | Novel wound sealants: Biomaterials and applications                                                                                            |
| 165       | 2010                   | Ahmad, Z.                                                                                                                                                                                                                                                                     | Playing with fire and getting burnt-A retrospective<br>analysis of injuries presenting to the emergency<br>department during 'firework season' |
| 166       | 2010                   | Rich, P. B., Douillet, C.,<br>Buchholz, V., Overby, D. W.,<br>Jones, S. W., and Cairns, B. A.                                                                                                                                                                                 | Use of the novel hemostatic textile Stasilon(R) to<br>arrest refractory retroperitoneal hemorrhage: a<br>case report                           |

Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                       | Title of Article                                                                                                                                                                                       |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167       | 2010                   | Takacs, I., Wegmann, J.,<br>Horvath, S., Ferencz, A.,<br>Ferencz, S., Javor, S.,<br>Odermatt, E., Roth, E., and<br>Weber, G.  | Efficacy of different hemostatic devices for severe liver bleeding: a randomized controlled animal study                                                                                               |
| 168       | 2010                   | Rothwell, S. W., Settle, T.,<br>Wallace, S., Dorsey, J.,<br>Simpson, D., Bowman, J. R.,<br>Janmey, P., and Sawyer, E.         | The long term immunological response of swine after two exposures to a salmon thrombin and fibrinogen hemostatic bandage                                                                               |
| 169       | 2010                   | Millner, R., Lockhart, A. S., and Marr, R.                                                                                    | Chitosan arrests bleeding in major hepatic injuries<br>with clotting dysfunction: an in vivo experimental<br>study in a model of hepatic injury in the presence<br>of moderate systemic heparinisation |
| 170       | 2010                   | Bochicchio, G. V., Kilbourne,<br>M. J., Keledjian, K., Hess, J.,<br>and Scalea, T.                                            | Evaluation of a new hemostatic agent in a porcine grade V liver injury model                                                                                                                           |
| 171       | 2010                   | Grottke, O., Braunschweig, T.,<br>Philippen, B., Gatzweiler, K. H.,<br>Gronloh, N., Staat, M.,<br>Rossaint, R., and Tolba, R. | A new model for blunt liver injuries in the swine                                                                                                                                                      |
| 172       | 2010                   | Gu, R., Sun, W., Zhou, H., Wu,<br>Z., Meng, Z., Zhu, X., Tang, Q.,<br>Dong, J., and Dou, G.                                   | The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent                                                                                                |
| 173       | 2010                   | Hammes, C., Moersdorf, G.,<br>Refeidi, A., Post, S., and<br>Kaehler, G.                                                       | Endoscopic application of hemostatic thrombin-<br>gelatin matrix (FloSeal) in anticoagulated pigs                                                                                                      |
| 174       | 2010                   | Stratos, I., Graff, J., Rotter, R.,<br>Mittlmeier, T., and Vollmar, B.                                                        | Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair                                                                                     |
| 175       | 2010                   | Aysan, E., Bektas, H., Ersoz,<br>F., Sari, S., Kaygusuz, A., and<br>Huq, G. E.                                                | Ability of the ankaferd blood stopper to prevent parenchymal bleeding in an experimental hepatic trauma model                                                                                          |
| 176       | 2010                   | Spiro, D. M., Zonfrillo, M. R.,<br>and Meckler, G. D.                                                                         | Wounds                                                                                                                                                                                                 |
| 177       | 2009                   | du-Frimpong, J.                                                                                                               | Genitourinary Trauma in Boys                                                                                                                                                                           |
| 178       | 2009                   | Claudet, I., Pasian, N.,<br>Debuisson, C., Salanne, S.,<br>and Rekhroukh, H.                                                  | Tourniquet syndrome: interest of a systematic<br>analysis of families' social conditions to detect<br>neglect situations                                                                               |
| 179       | 2009                   | Van Natta, T. L., Smith, B. R.,<br>Bricker, S. D., and Putnam, B.<br>A.                                                       | Hilar control in penetrating chest trauma: a simplified approach to an underutilized maneuver                                                                                                          |
| 180       | 2009                   | Richard, M. J. and Tornetta, P.,                                                                                              | Emergent management of APC-2 pelvic ring<br>injuries with an anteriorly placed C-clamp                                                                                                                 |
| 181       | 2009                   | Chalkias, A. F.                                                                                                               | Prehospital emergency thoracotomy: When to do it?                                                                                                                                                      |
| 182       | 2009                   | Berend, K. and Levi, M.                                                                                                       | Management of Adult Jehovah's Witness Patients with Acute Bleeding                                                                                                                                     |
| 183       | 2009                   | Barnard, A. R. and Allison, K.                                                                                                | The classification and principles of management of wounds in trauma                                                                                                                                    |
| 184       | 2009                   | Bochicchio, G., Kilbourne, M.,<br>Kuehn, R., Keledjian, K., Hess,<br>J., and Scalea, T.                                       | Use of a modified chitosan dressing in a<br>hypothermic coagulopathic grade V liver injury<br>model                                                                                                    |
| 185       | 2009                   | Wang, Y. and Lu, W.                                                                                                           | [The study and clinical application of absorbable hemostatic agent]                                                                                                                                    |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                     | Title of Article                                                                                                                                                                                                                                       |
|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 186       | 2009                   | Clay, J. G., Zierold, D.,<br>Grayson, K., and Battistella, F.<br>D.                                                                                                                         | Dextran polymer hemostatic dressing improves survival in liver injury model                                                                                                                                                                            |
| 187       | 2009                   | Adams, G. L., Manson, R. J.,<br>Hasselblad, V., Shaw, L. K.,<br>and Lawson, J. H.                                                                                                           | Acute in-vivo evaluation of bleeding with Gelfoam<br>plus saline and Gelfoam plus human thrombin<br>using a liver square lesion model in swine                                                                                                         |
| 188       | 2009                   | Xie, H., Teach, J. S., Burke, A.<br>P., Lucchesi, L. D., Wu, P. C.,<br>and Sarao, R. C.                                                                                                     | Laparoscopic repair of inferior vena caval injury using a chitosan-based hemostatic dressing                                                                                                                                                           |
| 189       | 2009                   | Bjorses, K. and Holst, J.                                                                                                                                                                   | Topical haemostatics in renal traumaan evaluation of four different substances in an experimental setting                                                                                                                                              |
| 190       | 2009                   | Bilgili, H., Kosar, A., Kurt, M.,<br>Onal, I. K., Goker, H., Captug,<br>O., Shorbagi, A., Turgut, M.,<br>Kekilli, M., Kurt, O. K., Kirazli,<br>S., Aksu, S., and<br>Haznedaroglu, I. C.     | Hemostatic efficacy of ankaferd blood stopper in a swine bleeding model                                                                                                                                                                                |
| 191       | 2009                   | Bertram, J. P., Williams, C. A.,<br>Robinson, R., Segal, S. S.,<br>Flynn, N. T., and Lavik, E. B.                                                                                           | Intravenous hemostat: nanotechnology to halt bleeding                                                                                                                                                                                                  |
| 192       | 2009                   | Fischer, T. H., Vournakis, J. N.,<br>Manning, J. E., McCurdy, S. L.,<br>Rich, P. B., Nichols, T. C.,<br>Scull, C. M., McCord, M. G.,<br>Decorta, J. A., Johnson, P. C.,<br>and Smith, C. J. | The design and testing of a dual fiber textile matrix for accelerating surface hemostasis                                                                                                                                                              |
| 193       | 2009                   | Liu, Y., Kopelman, D., Wu, L.<br>Q., Hijji, K., Attar, I., Preiss-<br>Bloom, O., and Payne, G. F.                                                                                           | Biomimetic sealant based on gelatin and microbial transglutaminase: an initial in vivo investigation                                                                                                                                                   |
| 194       | 2008                   | Kheirabadi, B. S., Sieber, J.,<br>Bukhari, T., Rudnicka, K.,<br>Murcin, L. A., and Tuthill, D.                                                                                              | High-pressure fibrin sealant foam: an effective hemostatic agent for treating severe parenchymal hemorrhage                                                                                                                                            |
| 195       | 2008                   | Chirinos, F. S.                                                                                                                                                                             | Local doctor creates clothing with tourniquets for troops                                                                                                                                                                                              |
| 196       | 2008                   | Shokrollahi, K., Sharma, H.,<br>and Gakhar, H.                                                                                                                                              | A technique for temporary control of hemorrhage                                                                                                                                                                                                        |
| 197       | 2008                   | Hong, J. P., Kim, Y. W., Lee, S.<br>K., Kim, S. H., and Min, K. H.                                                                                                                          | The effect of continuous release of recombinant<br>human epidermal growth factor (rh-EGF) in<br>chitosan film on full thickness excisional porcine<br>wounds                                                                                           |
| 198       | 2008                   | Cuschieri, J., Freeman, B.,<br>O'Keefe, G., Harbrecht, B. G.,<br>Bankey, P., Johnson, J. L.,<br>Minei, J. P., Sperry, J., West,<br>M., Nathens, A., Moore, E. E.,<br>and Maier, R. V.       | Inflammation and the host response to injury a<br>large-scale collaborative project: Patient-oriented<br>research core standard operating procedure for<br>clinical care x. guidelines for venous<br>thromboembolism prophylaxis in the trauma patient |
| 199       | 2008                   | Degiannis, E. and Zinn, R. J.                                                                                                                                                               | Pitfalls in penetrating thoracic trauma (lessons we learned the hard way)                                                                                                                                                                              |
| 200       | 2008                   | Bastos, R., Baisden, C. E.,<br>Harker, L., and Calhoon, J. H.                                                                                                                               | Penetrating Thoracic Trauma                                                                                                                                                                                                                            |
| 201       | 2008                   | Kaneko, N., Kobayashi, Y., and Okada, Y.                                                                                                                                                    | Anatomic variations of the renal vessels pertinent<br>to transperitoneal vascular control in the<br>management of trauma                                                                                                                               |
| 202       | 2008                   | Ong, S. Y., Wu, J., Moochhala,<br>S. M., Tan, M. H., and Lu, J.                                                                                                                             | Development of a chitosan-based wound dressing<br>with improved hemostatic and antimicrobial<br>properties                                                                                                                                             |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                                                                                                               | Title of Article                                                                                                                                                                             |
|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 203       | 2008                   | Sanghi, P., Virmani, R., Do, D.,<br>Erikson, J., Elliott, J.,<br>Cilingiroglu, M., Matthews, H.,<br>Kazi, M., Ricker, R., and<br>Bailey, S. R.                                                                                                                                        | A comparative evaluation of arterial blood flow and<br>the healing response after femoral artery closure<br>using angio-seal STS Plus and StarClose in a<br>porcine model                    |
| 204       | 2008                   | Xie, H., Khajanchee, Y. S., and Shaffer, B. S.                                                                                                                                                                                                                                        | Chitosan hemostatic dressing for renal<br>parenchymal wound sealing in a porcine model:<br>implications for laparoscopic partial nephrectomy<br>technique                                    |
| 205       | 2008                   | Leixnering, M., Reichetseder,<br>J., Schultz, A., Figl, M.,<br>Wassermann, E., Thurnher, M.,<br>and Redl, H.                                                                                                                                                                          | Gelatin thrombin granules for hemostasis in a severe traumatic liver and spleen rupture model in swine                                                                                       |
| 206       | 2008                   | Delgado, A. V., Kheirabadi, B.<br>S., Fruchterman, T. M.,<br>Scherer, M., Cortez, D., Wade,<br>C. E., Dubick, M. A., and<br>Holcomb, J. B.                                                                                                                                            | A novel biologic hemostatic dressing (fibrin patch)<br>reduces blood loss and resuscitation volume and<br>improves survival in hypothermic, coagulopathic<br>Swine with grade V liver injury |
| 207       | 2008                   | Jesty, J., Wieland, M., and<br>Niemiec, J.                                                                                                                                                                                                                                            | Assessment in vitro of the active hemostatic properties of wound dressings                                                                                                                   |
| 208       | 2008                   | Xie, H., Khajanchee, Y. S.,<br>Teach, J. S., and Shaffer, B. S.                                                                                                                                                                                                                       | Use of a chitosan-based hemostatic dressing in<br>laparoscopic partial nephrectomy                                                                                                           |
| 209       | 2008                   | Erdogan, D. and van Gulik, T.<br>M.                                                                                                                                                                                                                                                   | Evolution of fibrinogen-coated collagen patch for use as a topical hemostatic agent                                                                                                          |
| 210       | 2008                   | Zhang, MX., Chen, ZH., Li,<br>J., Yang, CY., Xie, ZG., and<br>Chen, GJ.                                                                                                                                                                                                               | Hemostatic effect and biocompatibility of RT-Q medical biomembrane                                                                                                                           |
| 211       | 2007                   | Franz, M. G., Steed, D. L., and<br>Robson, M. C.                                                                                                                                                                                                                                      | Optimizing Healing of the Acute Wound by<br>Minimizing Complications                                                                                                                         |
| 212       | 2007                   | Chaby, G., Senet, P., Vaneau,<br>M., Martel, P., Guillaume, J. C.,<br>Meaume, S., Teot, L., Debure,<br>C., Dompmartin, A., Bachelet,<br>H., Carsin, H., Matz, V.,<br>Richard, J. L., Rochet, J. M.,<br>Sales-Aussias, N., Zagnoli, A.,<br>Denis, C., Guillot, B., and<br>Chosidow, O. | Dressings for acute and chronic wounds: a systematic review                                                                                                                                  |
| 213       | 2007                   | Almogy, G. and Rivkind, A. I.                                                                                                                                                                                                                                                         | Terror in the 21st Century: Milestones and<br>Prospects-Part II                                                                                                                              |
| 214       | 2007                   | Honsik, K. A., Romeo, M. W.,<br>Hawley, C. J., Romeo, S. J.,<br>and Romeo, J. P.                                                                                                                                                                                                      | Sideline skin and wound care for acute injuries                                                                                                                                              |
| 215       | 2007                   | Hirshberg, A., Hoyt, D. B., and<br>Mattox, K. L.                                                                                                                                                                                                                                      | From "Leaky Buckets" to Vascular Injuries:<br>Understanding Models of Uncontrolled<br>Hemorrhage                                                                                             |
| 216       | 2007                   | Kauvar, D. S., Baer, D. G., and<br>Walters, T. J.                                                                                                                                                                                                                                     | Influence of systemic hypotension on skeletal<br>muscle ischemia-reperfusion injury after 4-hour<br>tourniquet application                                                                   |
| 217       | 2007                   | Rattanatayarom, W. and Wattanasirichaigoon, S.                                                                                                                                                                                                                                        | Evaluation of dermal irritancy potential of<br>Carboxymethyl-chitosan hydrogel and poly-(acrylic<br>acid) chitin hydrogel                                                                    |
| 218       | 2007                   | Sheikh, B. Y.                                                                                                                                                                                                                                                                         | Efficacy of acrylate tissue adhesive as vascular repair and hemostatic material                                                                                                              |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                    | Title of Article                                                                                                                                                         |
|-----------|------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 219       | 2007                   | Kheirabadi, B. S., Acheson, E.<br>M., Deguzman, R., Crissey, J.<br>M., Delgado, A. V., Estep, S.<br>J., and Holcomb, J. B. | The potential utility of fibrin sealant dressing in repair of vascular injury in swine                                                                                   |
| 220       | 2007                   | Roy, S. C., Paulose, M., and Grimes, C. A.                                                                                 | The effect of TiO2 nanotubes in the enhancement<br>of blood clotting for the control of hemorrhage                                                                       |
| 221       | 2007                   | Bjorses, K. and Holst, J.                                                                                                  | Various Local Hemostatic Agents with Different<br>Modes of Action; an in vivo Comparative<br>Randomized Vascular Surgical Experimental Study                             |
| 222       | 2007                   | Aballay, A. M., Recio, P.,<br>Slater, H., Goldfarb, I. W.,<br>Tolchin, E., Papasavas, P., and<br>Caushaj, P. F.            | The use of esmarch exsanguination for the treatment of extremity wound burns                                                                                             |
| 223       | 2006                   | Vertrees, A., Kellicut, D.,<br>Ottman, S., Peoples, G., and<br>Shriver, C.                                                 | Early Definitive Abdominal Closure Using Serial<br>Closure Technique on Injured Soldiers Returning<br>from Afghanistan and Iraq                                          |
| 224       | 2006                   | Pursifull, N. F., Morris, M. S.,<br>Harris, R. A., and Morey, A. F.                                                        | Damage control management of experimental grade 5 renal injuries: further evaluation of FloSeal gelatin matrix                                                           |
| 225       | 2006                   | Higgins, T. F. and Swanson,<br>E. R.                                                                                       | Pelvic antishock sheeting                                                                                                                                                |
| 226       | 2006                   | Hunt, P. A., Greaves, I., and Owens, W. A.                                                                                 | Emergency thoracotomy in thoracic trauma-a review                                                                                                                        |
| 227       | 2006                   | Nzewi, O., Slight, R. D., and Zamvar, V.                                                                                   | Management of blunt thoracic aortic injury                                                                                                                               |
| 228       | 2006                   | Voinchet, V., Vasseur, P., and Kern, J.                                                                                    | Efficacy and safety of hyaluronic acid in the management of acute wounds                                                                                                 |
| 229       | 2006                   | Schecter, W. P., Ivatury, R. R.,<br>Rotondo, M. F., and Hirshberg,<br>A.                                                   | Open Abdomen after Trauma and Abdominal Sepsis: A Strategy for Management                                                                                                |
| 230       | 2006                   | Jurgens, C., Schulz, A. P.,<br>Porte, T., Faschingbauer, M.,<br>and Seide, K.                                              | Biodegradable films in trauma and orthopedic surgery                                                                                                                     |
| 231       | 2006                   | De, Alwis W.                                                                                                               | Fingertip injuries                                                                                                                                                       |
| 232       | 2006                   | Klemcke, H. G.                                                                                                             | Evaluation of FloSeal as a potential intracavitary<br>hemostatic agent                                                                                                   |
| 233       | 2006                   | Wang, X., Yan, Y., and Zhang,<br>R.                                                                                        | A comparison of chitosan and collagen sponges as<br>hemostatic dressings                                                                                                 |
| 234       | 2005                   | Schreiber, M. A.                                                                                                           | Coagulopathy in the trauma patient                                                                                                                                       |
| 235       | 2005                   | Pope, L. E. and Hobbs, C. G.                                                                                               | Epistaxis: an update on current management                                                                                                                               |
| 236       | 2005                   | Kataoka, Y., Maekawa, K.,<br>Nishimaki, H., Yamamoto, S.,<br>and Soma, K.                                                  | Iliac vein injuries in hemodynamically unstable patients with pelvic fracture caused by blunt trauma                                                                     |
| 237       | 2005                   | Tiemann, A. H., Bohme, J., and Josten, C.                                                                                  | Emergency treatment of multiply injured patients<br>with unstable disruption of the posterior pelvic ring<br>by using the "C-clamp": Analysis of 28 consecutive<br>cases |
| 238       | 2005                   | Brandenburg, M. A., Hawkins, L., and Quick, G.                                                                             | Hand injuries, part 2: When nerves, vasculature, tendons, or ligaments are traumatized                                                                                   |
| 239       | 2005                   | Sagerman, P. J.                                                                                                            | Wounds                                                                                                                                                                   |
| 240       | 2005                   | Degiannis, E., Bowley, D. M.,<br>and Westaby, S.                                                                           | Penetrating cardiac injury                                                                                                                                               |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                     | Title of Article                                                                                                                                                                                      |
|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 241       | 2005                   | Rothwell, S. W., Reid, T. J.,<br>Dorsey, J., Flournoy, W. S.,<br>Bodo, M., Janmey, P. A., and<br>Sawyer, E.                                 | A salmon thrombin-fibrin bandage controls arterial bleeding in a swine aortotomy model                                                                                                                |
| 242       | 2005                   | Kheirabadi, B. S., Acheson, E.<br>M., Deguzman, R., Sondeen, J.<br>L., Ryan, K. L., Delgado, A.,<br>Dick, E. J., Jr., and Holcomb,<br>J. B. | Hemostatic efficacy of two advanced dressings in an aortic hemorrhage model in Swine                                                                                                                  |
| 243       | 2005                   | Cihan, A., Yilmaz, E.,<br>Yenidunya, S., and Ucan, B. H.                                                                                    | Medical haemostasis in acute hepatocyte injury<br>and experimental liver trauma                                                                                                                       |
| 244       | 2005                   | Hick, E. J., Morey, A. F.,<br>Harris, R. A., and Morris, M. S.                                                                              | Gelatin matrix treatment of complex renal injuries in a porcine model                                                                                                                                 |
| 245       | 2005                   | Laurence, S., Bareille, R.,<br>Baquey, C., and Fricain, J. C.                                                                               | Development of a resorbable macroporous<br>cellulosic material used as hemostatic in an<br>osseous environment                                                                                        |
| 246       | 2004                   | Bochicchio, G., Dunne, J.,<br>Bochicchio, K., and Scalea, T.                                                                                | The combination of platelet-enriched autologous<br>plasma with bovine collagen and thrombin<br>decreases the need for multiple blood transfusions<br>in trauma patients with retroperitoneal bleeding |
| 247       | 2004                   | Kopp, J., Jeschke, M. G.,<br>Bach, A. D., Kneser, U., and<br>Horch, R. E.                                                                   | Applied tissue engineering in the closure of severe<br>burns and chronic wounds using cultured human<br>autologous keratinocytes in a natural fibrin matrix                                           |
| 248       | 2004                   | Borowik, S., Popko, J., Ladny,<br>R., and Slowinski, K.                                                                                     | [External stabilization in the treatment of unstable pelvis fractures combined with additional injuries of internal organs]                                                                           |
| 249       | 2004                   | King, D. R., Cohn, S. M.,<br>Proctor, K. G., and Miami<br>Clinical Trials Group                                                             | Modified rapid deployment hemostat bandage terminates bleeding in coagulopathic patients with severe visceral injuries                                                                                |
| 250       | 2004                   | Gansslen, A., Krettek, C., and Pohlemann, T.                                                                                                | Die temporare Stabilisierung des Beckenrings mit der sog. Notfallbeckenzwinge                                                                                                                         |
| 251       | 2004                   | Giannoudis, P. V. and Pape,<br>H. C.                                                                                                        | Damage control orthopaedics in unstable pelvic<br>ring injuries                                                                                                                                       |
| 252       | 2004                   | Ang, C. Y., Samsudin, A. R.,<br>Karima, A. M., and Nizam, A.                                                                                | Locally produced bovine bone sponge as a haemostatic agent                                                                                                                                            |
| 253       | 2004                   | Pusateri, A. E., Delgado, A. V.,<br>Dick, E. J., Jr., Martinez, R. S.,<br>Holcomb, J. B., and Ryan, K. L.                                   | Application of a granular mineral-based hemostatic agent (QuikClot) to reduce blood loss after grade V liver injury in swine                                                                          |
| 254       | 2004                   | Schwaitzberg, S. D., Chan, M.<br>W., Cole, D. J., Read, M.,<br>Nichols, T., Bellinger, D., and<br>Connolly, R. J.                           | Comparison of poly-N-acetyl glucosamine with<br>commercially available topical hemostats for<br>achieving hemostasis in coagulopathic models of<br>splenic hemorrhage                                 |
| 255       | 2004                   | Krishnan, L. K., Mohanty, M.,<br>Umashankar, P. R., and Lal,<br>A. V.                                                                       | Comparative evaluation of absorbable hemostats: advantages of fibrin-based sheets                                                                                                                     |
| 256       | 2004                   | Griffith, B. C., Morey, A. F.,<br>Rozanski, T. A., Harris, R.,<br>Dalton, S. R., Torgerson, S. J.,<br>and Partyka, S. R.                    | Central renal stab wounds: treatment with augmented fibrin sealant in a porcine model                                                                                                                 |
| 257       | 2004                   | Doillon, C. J. and Dion, YM.                                                                                                                | Comparison of a plasma-based composite biologic sealant with fibrin glue (Tisseel) for vascular anastomoses                                                                                           |
| 258       | 2004                   | Vournakis, J. N., Demcheva,<br>M., Whitson, A., Guirca, R.,<br>and Pariser, E. R.                                                           | Isolation, purification, and characterization of poly-<br>N-acetyl glucosamine use as a hemostatic agent                                                                                              |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                                                                                                    | Title of Article                                                                                                                                                                                                           |
|-----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 259       | 2003                   | Underhill, S. and Crumplin, M.<br>K. H.                                                                                                                                                                                                                                    | A high price for victory: The management of pain<br>and transport of the sick and wounded in the<br>Napoleonic Wars (1793-1815)                                                                                            |
| 260       | 2003                   | Starr, A. J.                                                                                                                                                                                                                                                               | Immediate management of pelvic fractures                                                                                                                                                                                   |
| 261       | 2003                   | Donelan, S.                                                                                                                                                                                                                                                                | Teaching wound care and bandaging: An historical perspective                                                                                                                                                               |
| 262       | 2003                   | Salehian, O., Teoh, K., and<br>Mulji, A.                                                                                                                                                                                                                                   | Blunt and penetrating cardiac trauma: A review                                                                                                                                                                             |
| 263       | 2003                   | Pusateri, A. E., Modrow, H. E.,<br>Harris, R. A., Holcomb, J. B.,<br>Hess, J. R., Mosebar, R. H.,<br>Reid, T. J., Nelson, J. H.,<br>Goodwin, C. W., Jr.,<br>Fitzpatrick, G. M., McManus, A.<br>T., Zolock, D. T., Sondeen, J.<br>L., Cornum, R. L., and<br>Martinez, R. S. | Advanced hemostatic dressing development<br>program: animal model selection criteria and<br>results of a study of nine hemostatic dressings in a<br>model of severe large venous hemorrhage and<br>hepatic injury in Swine |
| 264       | 2003                   | Vournakis, J. N., Demcheva,<br>M., Whitson, A. B.,<br>Finkielsztein, S., and Connolly,<br>R. J.                                                                                                                                                                            | The RDH bandage: hemostasis and survival in a lethal aortotomy hemorrhage model                                                                                                                                            |
| 265       | 2003                   | Jewelewicz, D. D., Cohn, S.<br>M., Crookes, B. A., and<br>Proctor, K. G.                                                                                                                                                                                                   | Modified rapid deployment hemostat bandage<br>reduces blood loss and mortality in coagulopathic<br>pigs with severe liver injury.[Erratum appears in J<br>Trauma. 2003 Oct;55(4):621                                       |
| 266       | 2003                   | Singer, A. J., Nable, M.,<br>Cameau, P., Singer, D. D., and<br>McClain, S. A.                                                                                                                                                                                              | Evaluation of a new liquid occlusive dressing for excisional wounds                                                                                                                                                        |
| 267       | 2003                   | Schreiber, M. A., Holcomb, J.<br>B., Hedner, U., Brundage, S. I.,<br>Macaitis, J. M., Aoki, N., Meng,<br>Z. H., Tweardy, D. J., and<br>Hoots, K.                                                                                                                           | The effect of recombinant factor VIIa on noncoagulopathic pigs with grade V liver injuries                                                                                                                                 |
| 268       | 2003                   | Sondeen, J. L., Pusateri, A. E.,<br>Coppes, V. G., Gaddy, C. E.,<br>and Holcomb, J. B.                                                                                                                                                                                     | Comparison of 10 different hemostatic dressings in an aortic injury                                                                                                                                                        |
| 269       | 2003                   | Pusateri, A. E., McCarthy, S.<br>J., Gregory, K. W., Harris, R.<br>A., Cardenas, L., McManus, A.<br>T., and Goodwin, C. W., Jr.                                                                                                                                            | Effect of a chitosan-based hemostatic dressing on<br>blood loss and survival in a model of severe<br>venous hemorrhage and hepatic injury in swine                                                                         |
| 270       | 2003                   | Peng, Y., Ye, C., Zou, H., and<br>Liang, P.                                                                                                                                                                                                                                | Investigation of features of hemostasis sponge of collagen and chitosan compound                                                                                                                                           |
| 271       | 2002                   | Chiu, J., Ketchum, L. H., and<br>Reid, T. J.                                                                                                                                                                                                                               | Transfusion-sparing hemostatic agents                                                                                                                                                                                      |
| 272       | 2002                   | Rennie, M.                                                                                                                                                                                                                                                                 | Trauma, immobility and under nutrition, the harbingers of insulin resistance                                                                                                                                               |
| 273       | 2002                   | O'Mara, M. S., Goel, A., Recio,<br>P., Slater, H., Goldfarb, I. W.,<br>Tolchin, E., and Caushaj, P. F.                                                                                                                                                                     | The use of tourniquets in the excision of unexsanguinated extremity burn wounds                                                                                                                                            |
| 274       | 2002                   | Schreiber, M. A., Holcomb, J.<br>B., Hedner, U., Brundage, S. I.,<br>Macaitis, J. M., and Hoots, K.                                                                                                                                                                        | The effect of recombinant factor VIIa on coagulopathic pigs with grade V liver injuries                                                                                                                                    |
| 275       | 2002                   | Kheirabadi, B. S., Field-Ridley,<br>A., Pearson, R., MacPhee, M.,<br>Drohan, W., and Tuthill, D.                                                                                                                                                                           | Comparative study of the efficacy of the common topical hemostatic agents with fibrin sealant in a rabbit aortic anastomosis model                                                                                         |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                    | Title of Article                                                                                                                                                            |
|-----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 276       | 2002                   | Kheirabadi, B. S., Pearson, R.,<br>Tuthill, D., Rudnicka, K.,<br>Holcomb, J. B., Drohan, W.,<br>and MacPhee, M. J.                                         | Comparative study of the hemostatic efficacy of a new human fibrin sealant: is an antifibrinolytic agent necessary?                                                         |
| 277       | 2002                   | Turner, A. S., Parker, D.,<br>Egbert, B., Maroney, M.,<br>Armstrong, R., and Powers, N.                                                                    | Evaluation of a novel hemostatic device in an ovine<br>parenchymal organ bleeding model of normal and<br>impaired hemostasis                                                |
| 278       | 2002                   | Ishihara, M., Nakanishi, K.,<br>Ono, K., Sato, M., Kikuchi, M.,<br>Saito, Y., Yura, H., Matsui, T.,<br>Hattori, H., Uenoyama, M., and<br>Kurita, A.        | Photocrosslinkable chitosan as a dressing for<br>wound occlusion and accelerator in healing<br>process                                                                      |
| 279       | 2001                   | Anema, J. G., Morey, A. F.,<br>Harris, R., MacPhee, M., and<br>Cornum, R. L.                                                                               | Potential uses of absorbable fibrin adhesive bandage for genitourinary trauma                                                                                               |
| 280       | 2001                   | Klobucar, H., Delinar, D.,<br>Korzinek, M., and Korzinek, K.                                                                                               | CMC external fixator                                                                                                                                                        |
| 281       | 2001                   | Ertel, W., Keel, M., Eid, K.,<br>Platz, A., and Trentz, O.                                                                                                 | Control of severe hemorrhage using C-clamp and pelvic packing in multiply injured patients with pelvic ring disruption                                                      |
| 282       | 2001                   | Tyburski, J. G., Wilson, R. F.,<br>Dente, C., Steffes, C., and<br>Carlin, A. M.                                                                            | Factors affecting mortality rates in patients with abdominal vascular injuries                                                                                              |
| 283       | 2001                   | Edlich, R. F. and Reddy, V. R.                                                                                                                             | 5th Annual David R. Boyd, MD Lecture:<br>Revolutionary advances in wound repair in<br>emergency medicine during the last three decades.<br>A view toward the new millennium |
| 284       | 2001                   | Djurickovic, S., Snelling, C. F.<br>T., and Boyle, J. C.                                                                                                   | Tourniquet and subcutaneous epinephrine reduce blood loss during burn excision and immediate autografting                                                                   |
| 285       | 2001                   | Ono, K., Ishihara, M., Ozeki,<br>Y., Deguchi, H., Sato, M.,<br>Saito, Y., Yura, H., Sato, M.,<br>Kikuchi, M., Kurita, A., and<br>Maehara, T.               | Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications                                                                    |
| 286       | 2001                   | Davis, S. C., Eaglstein, W. H.,<br>Cazzaniga, A. L., and Mertz, P.<br>M.                                                                                   | An octyl-2-cyanoacrylate formulation speeds healing of partial-thickness wounds                                                                                             |
| 287       | 2001                   | Barbolt, T. A., Odin, M., Leger,<br>M., and Kangas, L.                                                                                                     | Pre-clinical subdural tissue reaction and absorption study of absorbable hemostatic devices                                                                                 |
| 288       | 2001                   | Martinowitz, U., Holcomb, J. B.,<br>Pusateri, A. E., Stein, M.,<br>Onaca, N., Freidman, M.,<br>Macaitis, J. M., Castel, D.,<br>Hedner, U., and Hess, J. R. | Intravenous rFVIIa administered for hemorrhage control in hypothermic coagulopathic swine with grade V liver injuries                                                       |
| 289       | 2001                   | Pusateri, A. E., Holcomb, J. B.,<br>Harris, R. A., MacPhee, M. J.,<br>Charles, N. C., Beall, L. D., and<br>Hess, J. R.                                     | Effect of fibrin bandage fibrinogen concentration on blood loss after grade V liver injury in swine                                                                         |
| 290       | 2001                   | Morey, A. F., Anema, J. G.,<br>Harris, R., Gresham, V.,<br>Daniels, R., Knight, R. W.,<br>Beall, D., MacPhee, M., and<br>Cornum, R. L.                     | Treatment of grade 4 renal stab wounds with absorbable fibrin adhesive bandage in a porcine model                                                                           |

 Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                               | Title of Article                                                                                             |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 291       | 2001                   | Hill, A., Estridge, T. D.,<br>Maroney, M., Monnet, E.,<br>Egbert, B., Cruise, G., and<br>Coker, G. T. | Treatment of suture line bleeding with a novel synthetic surgical sealant in a canine iliac PTFE graft model |

Table B.1. Articles excluded at the abstract level (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                                             | Title of Article                                                                                                                                   | Reason for Exclusion                                                           |
|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 292       | 2013                   | Clumpner, B. R., Polston,<br>R. W., Kragh, J. F., Jr.,<br>Westmoreland, T., Harcke,<br>H. T., Jones, J. A., Dubick,<br>M. A., Baer, D. G., and<br>Blackbourne, L. H.                                                | Single versus Double Routing<br>of the Band in the Combat<br>Application Tourniquet                                                                | Clinical study with fewer<br>than 5 subjects                                   |
| 293       | 2013                   | Barlow, B. T. and Kuhn,<br>K. M.                                                                                                                                                                                    | Limb salvage compared with<br>amputation in the acute setting:<br>Criteria used on the battlefield                                                 | Focus is not prehospital<br>control of bleeding                                |
| 294       | 2012                   | Sorensen, B. and Fries, D.                                                                                                                                                                                          | Emerging treatment strategies<br>for trauma-induced<br>coagulopathy                                                                                | Narrative review not<br>focused on prehospital<br>bleeding                     |
| 295       | 2012                   | Orman, J. A., Eastridge, B.<br>J., Baer, D. G., Gerhardt,<br>R. T., Rasmussen, T. E.,<br>and Blackbourne, L. H.                                                                                                     | The impact of 10 years of war<br>on combat casualty care<br>research: A citation analysis                                                          | Addresses topics other<br>than hemostatic<br>dressings and<br>tourniquets      |
| 296       | 2012                   | Brown, K. V., Guthrie, H.<br>C., Ramasamy, A.,<br>Kendrew, J. M., and<br>Clasper, J.                                                                                                                                | Modern military surgery:<br>Lessons from Iraq and<br>Afghanistan                                                                                   | Focus is not prehospital<br>control of bleeding                                |
| 297       | 2012                   | Mamczak, C. N., Born, C.<br>T., Obremskey, W. T.,<br>Dromsky, D. M., and<br>Extremity War Injuries VII<br>Acute Care Panel                                                                                          | Evolution of acute orthopaedic care                                                                                                                | Review is not exclusive<br>to prehospital control of<br>bleeding               |
| 298       | 2012                   | Rasmussen, T. E.,<br>Dubose, J. J., Asensio, J.<br>A., Feliciano, D. V., Fox, C.<br>J., Nunez, T. C., Sise, M.<br>J., and Military Liaison<br>Committee of the American<br>Association for the Surgery<br>of Trauma | Tourniquets, vascular shunts,<br>and endovascular technologies:<br>esoteric or essential? A report<br>from the 2011 AAST Military<br>Liaison Panel | Not a clinical study                                                           |
| 299       | 2012                   | Jorgensen, H. O., Heier-<br>Madsen, K., and<br>Stokkebye, J. E.                                                                                                                                                     | Casualty rates among Danish soldiers in Iraq and Afghanistan                                                                                       | Clinical study does not<br>address tourniquet or<br>hemostatic dressing<br>use |
| 300       | 2012                   | Mishwani, A. H., Ghaffar,<br>A., and Janjua, S.                                                                                                                                                                     | Combat related vascular trauma                                                                                                                     | Clinical study had too<br>few patients using<br>tourniquets                    |
| 301       | 2012                   | Swan, K. G., Swan, K. G.,<br>Jr., and Ahearn, M.                                                                                                                                                                    | Tourniquets, pressure points, and extremity hemorrhage                                                                                             | Editorial                                                                      |
| 302       | 2012                   | Titley, P.                                                                                                                                                                                                          | A topical subject                                                                                                                                  | Insufficient information<br>to use as background<br>reference                  |
| 303       | 2012                   | Kheirabadi, B. S.,<br>Terrazas, I. B., Williams, J.<br>F., Hanson, M. A., Dubick,<br>M. A., and Blackbourne,<br>L. H.                                                                                               | Negative-pressure wound<br>therapy: a hemostatic adjunct<br>for control of coagulopathic<br>hemorrhage in large soft tissue<br>wounds              | Not a prehospital treatment for bleeding                                       |
| 304       | 2012                   | Pasquier, P., Renner, J.,<br>and Merat, S.                                                                                                                                                                          | Infections and tourniquet<br>application in severe open tibia<br>fractures from combat                                                             | Letter to the editor                                                           |

 Table B.2. Documents that were retrieved and then excluded

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                                                                                                                                             | Title of Article                                                                                                                                      | Reason for Exclusion                                              |
|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 305       | 2012                   | Polk, T. and Sims, C.                                                                                                                                                                                                                                                                                               | Life & limb: tourniquet saves<br>man severely injured in vehicle<br>crash                                                                             | Case report                                                       |
| 306       | 2012                   | Jacobs, N., Rourke, K.,<br>Rutherford, J., Hicks, A.,<br>Smith, S. R., Templeton,<br>P., Adams, S. A., and<br>Jansen, J. O.                                                                                                                                                                                         | Lower limb injuries caused by<br>improvised explosive devices:<br>Proposed 'Bastion<br>classification' and prospective<br>validation                  | Not a prehospital clinical study                                  |
| 307       | 2011                   | Francesko, A. and Tzanov,<br>T.                                                                                                                                                                                                                                                                                     | Chitin, chitosan and derivatives<br>for wound healing and tissue<br>engineering                                                                       | Review does not cover<br>hemostasis                               |
| 308       | 2011                   | Parker, P. and Limb<br>Trauma Working Group                                                                                                                                                                                                                                                                         | Consensus statement on<br>decision making in junctional<br>trauma care                                                                                | Does not contain<br>prehospital background<br>information         |
| 309       | 2011                   | King, D. R.                                                                                                                                                                                                                                                                                                         | Thirty consecutive uses of a<br>hemostatic bandage at a US<br>Army combat support hospital<br>and forward surgical team in<br>Operation Iraqi Freedom | Not a prehospital<br>application of<br>hemostatic dressing        |
| 310       | 2011                   | Waibel, K. H., Haney, B.,<br>Moore, M., Whisman, B.,<br>and Gomez, R.                                                                                                                                                                                                                                               | Safety of chitosan bandages in shellfish allergic patients                                                                                            | Not a clinical study of bleeding                                  |
| 311       | 2011                   | Rich, N. M.                                                                                                                                                                                                                                                                                                         | Vascular trauma historical notes                                                                                                                      | Background reference<br>not specific to<br>prehospital hemostasis |
| 312       | 2011                   | Pohlemann, T., Stengel,<br>D., Tosounidis, G.,<br>Reilmann, H., Stuby, F.,<br>Stockle, U., Seekamp, A.,<br>Schmal, H., Thannheimer,<br>A., Holmenschlager, F.,<br>Gansslen, A., Rommens,<br>P. M., Fuchs, T.,<br>Baumgartel, F.,<br>Marintschev, I., Krischak,<br>G., Wunder, S., Tscherne,<br>H., and Culemann, U. | Survival trends and predictors<br>of mortality in severe pelvic<br>trauma: estimates from the<br>German Pelvic Trauma<br>Registry Initiative          | Not a prehospital<br>clinical study                               |
| 313       | 2011                   | Metcalfe, A. J., Davies, K.,<br>Ramesh, B., O'Kelly, A.,<br>and Rajagopal, R.                                                                                                                                                                                                                                       | Haemorrhage control in pelvic<br>fracturesa survey of surgical<br>capabilities                                                                        | Not a prehospital<br>clinical study                               |
| 314       | 2011                   | Yin, H., He, H., Arbon, P.,<br>and Zhu, J.                                                                                                                                                                                                                                                                          | A survey of the practice of<br>nurses' skills in Wenchuan<br>earthquake disaster sites:<br>implications for disaster training                         | Not a clinical study focused on bleeding                          |
| 315       | 2011                   | Dai, T., Tanaka, M.,<br>Huang, Y. Y., and Hamblin,<br>M. R.                                                                                                                                                                                                                                                         | Chitosan preparations for<br>wounds and burns:<br>antimicrobial and wound-<br>healing effects                                                         | Review, not related to bleeding or hemostasis                     |
| 316       | 2011                   | Tourtier, J. P., Jault, P.,<br>Tazarourte, K., Borne, M.,<br>and Bargues, L.                                                                                                                                                                                                                                        | Tourniquets on the battlefield:<br>could N-acetylcysteine be<br>useful?                                                                               | Letter to the editor                                              |
| 317       | 2010                   | Fox, C. J., Perkins, J. G.,<br>Kragh, J. F., Jr., Singh, N.<br>N., Patel, B., and Ficke,<br>J. R.                                                                                                                                                                                                                   | Popliteal artery repair in<br>massively transfused military<br>trauma casualties: a pursuit to<br>save life and limb                                  | Not a prehospital clinical study                                  |
| 318       | 2010                   | Crossley, B.                                                                                                                                                                                                                                                                                                        | Tourniquet systems pose challenges                                                                                                                    | Cover tourniquets used in surgery                                 |

 Table B.2. Documents that were retrieved and then excluded (continued)

| Reference | Year of Publication | Authors                                                                                                             | Title of Article                                                                                                                             | Reason for Exclusion                                                                           |
|-----------|---------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 319       | 2010                | Katoch, B. R. and<br>Gambhir, C. R. P. S.                                                                           | Warfare vascular injuries                                                                                                                    | Does not provide<br>sufficient prehospital<br>information to use as a<br>background reference. |
| 320       | 2010                | Duncan, N. S. and Moran, C.                                                                                         | (i) Initial resuscitation of the trauma victim                                                                                               | Not specific to<br>prehospital treatment                                                       |
| 321       | 2009                | Davenport, R., Tai, N., and Walsh, M.                                                                               | Vascular trauma                                                                                                                              | Not a prehospital<br>background reference                                                      |
| 322       | 2009                | Franco, P.                                                                                                          | Alertwatch for "look alike"<br>Combat Application Tourniquet<br>(C.A.T.)                                                                     | Not related to clinical tourniquet use                                                         |
| 323       | 2009                | von, Tersch R., Birch, H.,<br>Gupta, R., and Tyner, C. F.                                                           | Examining technologies to<br>control hemorrhage by using<br>modeling and simulation to<br>simulate casualties and<br>treatment               | Not a clinical study.<br>Used modeling and<br>stimulation                                      |
| 324       | 2009                | Shipman, N. and Lessard, C. S.                                                                                      | Pressure applied by the<br>emergency/Israeli bandage                                                                                         | Not a clinical study.<br>Simulation.                                                           |
| 325       | 2009                | Rush Jr, R. M., Beekley, A.<br>C., Puttler, E. G., and<br>Kjorstad, R. J.                                           | The Mangled Extremity                                                                                                                        | Focus is not prehospital control of bleeding                                                   |
| 326       | 2009                | Parker, P.                                                                                                          | Emergency tourniquet use                                                                                                                     | Letter to the editor                                                                           |
| 327       | 2009                | Fludger, S. and Bell, A.                                                                                            | Tourniquet application in a rural<br>Queensland HEMS<br>environment                                                                          | Case report                                                                                    |
| 328       | 2009                | Mullins, J. and Harrahill, M.                                                                                       | Use of a tourniquet after a gunshot wound to the thigh                                                                                       | Case report                                                                                    |
| 329       | 2009                | Moore, F. A.                                                                                                        | Tourniquets: another adjunct in damage control?                                                                                              | Editorial                                                                                      |
| 330       | 2008                | Fox, C. J., Gillespie, D. L.,<br>Cox, E. D., Kragh, J. F.,<br>Jr., Mehta, S. G., Salinas,<br>J., and Holcomb, J. B. | Damage control resuscitation<br>for vascular surgery in a<br>combat support hospital                                                         | Does not address any<br>of the key questions                                                   |
| 331       | 2008                | Gwinn, D. E., Keeling, J.,<br>Froehner, J. W.,<br>McGuigan, F. X., and<br>Andersen, R.                              | Perioperative differences<br>between bone bridging and<br>non-bone bridging transtibial<br>amputations for wartime lower<br>extremity trauma | Not a prehospital clinical study                                                               |
| 332       | 2008                | Recinos, G., Inaba, K.,<br>Dubose, J., Demetriades,<br>D., and Rhee, P.                                             | Local and systemic hemostatics in trauma: A review                                                                                           | Narrative review with<br>sparse information on<br>hemostatic dressings                         |
| 333       | 2008                | Blackbourne, L. H., Mabry,<br>R., Sebesta, J., and<br>Holcomb, J. B.                                                | Joseph Lister, noncompressible<br>arterial hemorrhage, and the<br>next generation of<br>"tourniquets"?                                       | Historical account of tourniquet use                                                           |
| 334       | 2008                | Perkins, J. G., Cap, A. P.,<br>Weiss, B. M., Reid, T. J.,<br>and Bolan, C. D.                                       | Massive transfusion and nonsurgical hemostatic agents                                                                                        | Review article is not<br>focused on prehospital<br>control of bleeding                         |
| 335       | 2008                | Mackenzie, C. F. and<br>Shander, A.                                                                                 | What to do if no blood is available but the patient is bleeding?                                                                             | Insufficient prehospital background information to use as reference                            |

 Table B.2.
 Documents that were retrieved and then excluded (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                    | Title of Article                                                                                                                                                        | Reason for Exclusion                                                     |
|-----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 336       | 2008                   | Nelson, T. J., Clark, T.,<br>Stedje-Larsen, E. T.,<br>Lewis, C. T., Grueskin, J.<br>M., Echols, E. L., Wall, D.<br>B., Felger, E. A., and<br>Bohman, H. R. | Close proximity blast injury<br>patterns from improvised<br>explosive devices in Iraq: A<br>report of 18 cases                                                          | Too few patients with<br>tourniquets or<br>hemostatic dressing to<br>use |
| 337       | 2008                   | Fan, Y., Sun, H., Pei, G.,<br>and Ruan, C.                                                                                                                 | Haemostatic efficacy of an<br>ethyl-2-cyanoacrylate-based<br>aerosol in combination with<br>tourniquet application in a large<br>wound model with an arterial<br>injury | Not a hemostatic<br>dressing, type of<br>tourniquet not report           |
| 338       | 2008                   | Li, Z., Zhou, GH., Liu, C.,<br>Mei, YJ., Ning, ZS., and<br>Lu, SM.                                                                                         | A multifunctional tourniquet attachment system                                                                                                                          | Not related to<br>commercially available<br>tourniquet use               |
| 339       | 2007                   | Fox, C. J. and Starnes,<br>B. W.                                                                                                                           | Vascular surgery on the modern battlefield                                                                                                                              | Background reference<br>does not emphasize<br>prehospital procedures     |
| 340       | 2007                   | Moorhouse, I., Thurgood,<br>A., Walker, N., Cooper, B.,<br>Mahoney, P. F., and<br>Hodgetts, T. J.                                                          | A realistic model for<br>catastrophic external<br>haemorrhage training                                                                                                  | Describes a model and<br>does not present<br>patient data                |
| 341       | 2007                   | Bulger, E. M. and Maier,<br>R. V.                                                                                                                          | Prehospital Care of the Injured:<br>What's New                                                                                                                          | Focus is not prehospital control of bleeding                             |
| 342       | 2007                   | Kragh, J. F., Jr., Baer, D.<br>G., and Walters, T. J.                                                                                                      | Extended (16-hour) tourniquet<br>application after combat<br>wounds: a case report and<br>review of the current literature                                              | Case report                                                              |
| 343       | 2007                   | McManus, J., Hurtado, T.,<br>Pusateri, A., and Knoop,<br>K. J.                                                                                             | A case series describing<br>thermal injury resulting from<br>zeolite use for hemorrhage<br>control in combat operations                                                 | Case reports                                                             |
| 344       | 2006                   | Laskowski-Jones, L.                                                                                                                                        | First aid for bleeding wounds                                                                                                                                           | Not a clinical study or suitable background reference                    |
| 345       | 2006                   | Mucciarone, J. J.,<br>Llewellyn, C. H., and<br>Wightman, J. M.                                                                                             | Tactical combat casualty care<br>in the assault on Punta Paitilla<br>Airfield                                                                                           | Clinical study with too few subjects                                     |
| 346       | 2006                   | Esmarch, F.                                                                                                                                                | Historical Article                                                                                                                                                      | Not related to extremity<br>hemorrhage control                           |
| 347       | 2006                   | Beekley, A. C.                                                                                                                                             | United States Military Surgical<br>Response to Modern Large-<br>Scale Conflicts: The Ongoing<br>Evolution of a Trauma System                                            | Background reference<br>not focused on<br>prehospital procedures         |
| 348       | 2006                   | Ostomel, T. A., Stoimenov,<br>P. K., Holden, P. A., Alam,<br>H. B., and Stucky, G. D.                                                                      | Host-guest composites for<br>induced hemostasis and<br>therapeutic healing in traumatic<br>injuries                                                                     | Study does not involve<br>human or animal<br>subjects                    |
| 349       | 2006                   | Owens, B. D., Wenke, J.<br>C., Svoboda, S. J., and<br>White, D. W.                                                                                         | Extremity trauma research in the United States Army                                                                                                                     | Background reference<br>not specific to<br>prehospital treatment         |
| 350       | 2005                   |                                                                                                                                                            | Laboratory evaluation of<br>battlefield tourniquets in human<br>volunteers                                                                                              | Not published in a peer<br>reviewed journal /<br>manuscript copy         |

 Table B.2.
 Documents that were retrieved and then excluded (continued)
| Reference | Year of Publication | Authors                                                                                                                                                                      | Title of Article                                                                                                                                   | Reason for Exclusion                                                                       |
|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 351       | 2005                | Hodgetts, T. J., Russell, R.<br>J., Mahoney, P. F.,<br>Russell, M. Q., and<br>Kenward, G.                                                                                    | Evaluation of clinician attitudes<br>to the implementation of novel<br>haemostatic techniques                                                      | Survey, no clinical<br>prehospital data related<br>to evidence report                      |
| 5         | 2005                | Dorlac, W. C., DeBakey,<br>M. E., Holcomb, J. B.,<br>Fagan, S. P., Kwong, K. L.,<br>Dorlac, G. R., Schreiber,<br>M. A., Persse, D. E.,<br>Moore, F. A., and Mattox,<br>K. L. | Mortality from isolated civilian<br>penetrating extremity injury                                                                                   | Clinical study, did not<br>use tourniquets or<br>hemostatic dressings                      |
| 352       | 2004                | Holcomb, J. B.                                                                                                                                                               | Methods for improved<br>hemorrhage control                                                                                                         | Narrative review with no<br>information on<br>prehospital care                             |
| 353       | 2004                | Kulkarni, R.                                                                                                                                                                 | Alternative and topical approaches to treating the massively bleeding patient                                                                      | Background information<br>already available in<br>more complete<br>references              |
| 354       | 2004                | Guyver, P. M. and<br>Lambert, A. W.                                                                                                                                          | Vascular access on the front line                                                                                                                  | Focus is not prehospital control of bleeding                                               |
| 355       | 2003                | Gansslen, A., Giannoudis,<br>P., and Pape, H. C.                                                                                                                             | Hemorrhage in pelvic fracture:<br>who needs angiography?                                                                                           | Background reference<br>not specific to<br>prehospital treatments<br>for external bleeding |
| 356       | 2003                | Porter, K. and Greaves, I.                                                                                                                                                   | Crush injury and crush<br>syndrome: a consensus<br>statement                                                                                       | Not related to extremity<br>hemorrhage control                                             |
| 357       | 2003                | Becker, C.                                                                                                                                                                   | Bloodless coup. Funded by the<br>Army, Oregon researchers turn<br>to the sea to develop a<br>revolutionary bandage that<br>stanches heavy bleeding | Narrative review does<br>not contain information<br>needed for this<br>evidence report     |
| 358       | 2002                | McEwen, J. A., Kelly, D. L.,<br>Jardanowski, T., and<br>Inkpen, K.                                                                                                           | Tourniquet safety in lower leg applications                                                                                                        | Not related to extremity<br>hemorrhage control                                             |
| 359       | 2002                | Scalea, T.                                                                                                                                                                   | What's new in trauma in the past 10 years                                                                                                          | Focus is not prehospital control of bleeding                                               |
| 360       | 2002                | Strong, D. P. and Edwards, A. T.                                                                                                                                             | Vascular trauma                                                                                                                                    | Focus is not prehospital control of bleeding                                               |
| 361       | 2001                | Blackwood, M.                                                                                                                                                                | Royal Army Medical Corps, 3rd<br>Corps Medical Society.<br>Treatment of wounds from fire<br>trench to field ambulance. 1916                        | Background reference<br>not related to focus of<br>the evidence report                     |
| 362       | 2001                | Rich, N. M. and Rhee, P.                                                                                                                                                     | An historical tour of vascular<br>injury management: From its<br>inception to the new millennium                                                   | Focus is not prehospital<br>control of bleeding                                            |
| 363       | 2001                | Yong, H. and Jianning, L.                                                                                                                                                    | The design and the clinical application of the mini-tourniquet                                                                                     | The device is not intended for prehospital use.                                            |

 Table B.2.
 Documents that were retrieved and then excluded (continued)

| Reference | Year of<br>Publication | Authors                                                                                                                                                            | Title of Article                                                                                                                                                                               | Reason for<br>Exclusion                                                                  |
|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 364       | 2013                   | Sena, M. J., Douglas, G.,<br>Gerlach, T., Grayson, J.<br>K., Pichakron, K. O., and<br>Zierold, D.                                                                  | A pilot study of the use of kaolin-<br>impregnated gauze (Combat<br>Gauze) for packing high-grade<br>hepatic injuries in a hypothermic<br>coagulopathic swine model                            | Hepatic injury<br>animal model                                                           |
| 365       | 2013                   | Martin, M. J.                                                                                                                                                      | Editorial to accompany "A pilot<br>study of the use of kaolin-<br>impregnated gauze (Combat<br>Gauze) for packing high-grade<br>hepatic injuries in a hypothermic<br>coagulopathic swine model | Hepatic injury<br>animal model                                                           |
| 366       | 2012                   | Floyd, C. T., Rothwell, S.<br>W., Martin, R., Risdahl, J.,<br>and Olson, C. E.                                                                                     | A salmon thrombin-fibrinogen<br>dressing controls hemorrhage in a<br>swine model compared to<br>standard kaolin-coated gauze                                                                   | Test dressing is<br>not commercially<br>available                                        |
| 367       | 2012                   | Mueller, G. R., Pineda, T.<br>J., Xie, H. X., Teach, J. S.,<br>Barofsky, A. D., Schmid,<br>J. R., and Gregory, K. W.                                               | A novel sponge-based wound<br>stasis dressing to treat lethal<br>noncompressible hemorrhage                                                                                                    | Investigational<br>hemostatic<br>dressing                                                |
| 368       | 2012                   | De Castro, G. P., Dowling,<br>M. B., Kilbourne, M.,<br>Keledjian, K., Driscoll, I.<br>R., Raghavan, S. R.,<br>Hess, J. R., Scalea, T. M.,<br>and Bochicchio, G. V. | Determination of efficacy of novel<br>modified chitosan sponge<br>dressing in a lethal arterial injury<br>model in swine                                                                       | The hemostatic<br>dressings is not a<br>commercially<br>available product                |
| 369       | 2012                   | Charbonneau, S.,<br>Lemarie, C. A., Peng, H.<br>T., Ganopolsky, J. G.,<br>Shek, P. N., and Blostein,<br>M. D.                                                      | Surface-attached amphipathic peptides reduce hemorrhage in vivo                                                                                                                                | Not appropriate<br>external<br>hemorrhage<br>animal model                                |
| 370       | 2012                   | Shukla, A., Fang, J. C.,<br>Puranam, S., Jensen, F.<br>R., and Hammond, P. T.                                                                                      | Hemostatic multilayer coatings                                                                                                                                                                 | Technical<br>discussion of<br>development and<br>creation of a<br>hemostatic<br>dressing |
| 371       | 2011                   | Seetharaman, S.,<br>Natesan, S., Stowers, R.<br>S., Mullens, C., Baer, D.<br>G., Suggs, L. J., and<br>Christy, R. J.                                               | A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity                                                                                                             | In vitro study only                                                                      |
| 372       | 2011                   | Dowling, M. B., Kumar, R.,<br>Keibler, M. A., Hess, J. R.,<br>Bochicchio, G. V., and<br>Raghavan, S. R.                                                            | A self-assembling hydrophobically<br>modified chitosan capable of<br>reversible hemostatic action                                                                                              | In vitro study                                                                           |
| 373       | 2011                   | Bowman, P. D., Wang, X.,<br>Meledeo, M. A., Dubick,<br>M. A., and Kheirabadi, B.<br>S.                                                                             | Toxicity of aluminum silicates<br>used in hemostatic dressings<br>toward human umbilical veins<br>endothelial cells, HeLa cells, and<br>RAW267.4 mouse macrophages                             | Not a clinical<br>study. Used cell<br>cultures                                           |
| 374       | 2011                   | Hirst, H., Brinkman, J.,<br>Beasley, A., Crocker, R.,<br>and O'Sullivan, J.                                                                                        | The effects of blood pressure on<br>rebleeding when using<br>ExcelArrest in a porcine model of<br>lethal femoral injury                                                                        | No outcomes of interest                                                                  |

 Table B.3.
 Excluded animal model nonclinical studies

| Reference | Year of<br>Publication | Authors                                                                                                                                                                                   | Title of Article                                                                                                                                               | Reason for<br>Exclusion                                            |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 375       | 2010                   | Naimer, S. A.                                                                                                                                                                             | New era of transparent<br>compression to control bleeding<br>from traumatic wounds: Removing<br>the blindfold                                                  | Product is not<br>commercially<br>available                        |
| 376       | 2010                   | Kranokpiraksa, P.,<br>Pavcnik, D., Kakizawa, H.,<br>Uchida, B. T., Jeromel,<br>M., Keller, F. S., and<br>Rosch, J.                                                                        | Hemostatic efficacy of chitosan-<br>based bandage for closure of<br>percutaneous arterial access<br>sites: An experimental study in<br>heparinized sheep model | Not related to<br>extremity<br>hemorrhage<br>wounds                |
| 377       | 2010                   | Gegel, B. T., Burgert, J.<br>M., Lockhart, C., Austin,<br>R., III, Davila, A., Deeds,<br>J., Hodges, L., Hover, A.,<br>Roy, J., Simpson, G.,<br>Weaver, S., Wolfe, W.,<br>and Johnson, D. | Effects of Celox and TraumaDEX<br>on hemorrhage control in a<br>porcine model                                                                                  | Contains data<br>already<br>published in<br>another<br>publication |
| 378       | 2009                   | Velmahos, G. C.,<br>Tabbara, M., Spaniolas,<br>K., Duggan, M., Alam, H.<br>B., Serra, M., Sun, L., and<br>de, Luis J.                                                                     | Self-expanding hemostatic<br>polymer for control of<br>exsanguinating extremity bleeding                                                                       | Not a commercially available product                               |
| 379       | 2009                   | Li, J., Yan, W., Jing, L.,<br>Xueyong, L., Yuejun, L.,<br>Wangzhou, L., and<br>Shaozong, C.                                                                                               | Addition of an alginate to a<br>modified zeolite improves<br>hemostatic performance in a<br>swine model of lethal groin injury                                 | Not a commercially available product                               |
| 380       | 2006                   | Walters, T., Baer, D. G.,<br>and Kauvar, D. S.                                                                                                                                            | A large animal fatal extremity<br>hemorrhage model and evaluation<br>of a polymeric dressing (fatal<br>extremity hemorrhage)                                   | BioFoam is not<br>commercially<br>available in the<br>U.S.         |
| 381       | 2004                   | Pusateri, A. E.,<br>Kheirabadi, B. S.,<br>Delgado, A. V., Doyle, J.<br>W., Kanellos, J.,<br>Uscilowicz, J. M.,<br>Martinez, R. S., Holcomb,<br>J. B., and Modrow, H. E.                   | Structural design of the dry fibrin<br>sealant dressing and its impact on<br>the hemostatic efficacy of the<br>product                                         | Not a model of<br>extremity<br>hemorrhage                          |
| 382       | 2004                   | Fischer, T. H., Connolly,<br>R., Thatte, H. S., and<br>Schwaitzberg, S. S.                                                                                                                | Comparison of structural and<br>hemostatic properties of the poly-<br>N-acetyl glucosamine Syvek<br>Patch with products containing<br>chitosan                 | Not an animal<br>study of<br>extremity<br>bleeding                 |
| 383       | 2003                   | Jewelewicz, D. D., Cohn,<br>S. M., Crookes, B. A., and<br>Proctor, K. G.                                                                                                                  | Erratum: Modified Rapid<br>Deployment Hemostat Bandage<br>Reduces Blood Loss and Mortality<br>in Coagulopathic Pigs with Severe<br>Liver Injury                | Not related to<br>extremity<br>hemorrhage<br>control               |
| 384       | 2002                   | Rothwell, S. W., Fudge, J.<br>M., Reid, T. J., and<br>Krishnamurti, C.                                                                                                                    | Epsilon-amino caproic acid<br>additive decreases fibrin bandage<br>performance in a swine arterial<br>bleeding model                                           | No comparisons<br>of interest, no<br>standard gauze<br>control     |
| 385       | 2002                   | Rothwell, S. W., Fudge, J.<br>M., Chen, W. K., Reid, T.<br>J., and Krishnamurti, C.                                                                                                       | Addition of a propyl gallate-based<br>procoagulant to a fibrin bandage<br>improves hemostatic performance<br>in a swine arterial bleeding model                | No comparisons<br>of interest, no<br>standard gauze<br>control     |

 Table B.3. Excluded animal model nonclinical studies (continued)

# Appendix C. Evidence Tables for Indirect Evidence: Animal, Volunteer and Simulation Studies

### **Animal Studies**

### Animal studies using 5 seconds or less of free bleeding

Two of the studies using 5 seconds or less free bleeding time were designed to test hemostasis rates at 4 minutes after application when trained military personnel were using the hemostatic dressings. Satterly et al.<sup>82</sup> reported that QuikClot Combat Gauze had a 83% hemostasis rate compared with 53% for HemCon but the difference was not statistically significant. However military personnel improved the hemostasis rate by 20% compared with nonmedical personnel; the increase was statistically significant. Military personnel also rated QuikClot Combat Gauze the easiest to use.

The other study using trained military personnel examined various versions of HemCon and reported the best results with the double-sided bandage; hemostasis with this dressing was 76% at 4 minutes and was significantly better than standard gauze.<sup>83</sup> Military personnel preferred the double-sided HemCon bandage.

Gustafson et al.<sup>386</sup> reported that application of HemCon Bandages after 5 seconds of free bleeding achieved significant hemostasis (100% at 30 minutes). Wright et al.<sup>84</sup> specifically looked at tissue damage and wound healing when using QuikClot granules. Extensive tissue burns, necrosis, and impaired wound healing were noted in animals treated with QuikClot granules.

| Reference                             | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % Hemostasis                                                                                                                                                                                                                                             | Survival        | Adverse<br>Events | Other Outcomes                                                                                                                                                                                                                                                                                                                         | Author's Conclusions                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Satterly et al.<br>2013 <sup>82</sup> | Assess employment and efficacy of<br>multiple hemostatic bandages by<br>the actual personnel administering<br>care at the front lines as well as a<br>subjective evaluation of both the<br>training and the ease of use of the<br>various hemostatic products. Military<br>personnel were trained prior to<br>deployment. Celox, ChitoGauze,<br>QuikClot Combat Gauze, and<br>HemCon were examined. Femoral<br>and axillary artery injury in a goat<br>model. Free bleeding for 5 seconds.<br>Dressings were applied and then<br>manual pressure for 2 minutes.<br>Bleeding was evaluated and then<br>manual pressure reapplied for 4<br>minutes. | Hemostasis at 4<br>minutes: QuikClot<br>Combat Gauze 83%,<br>Celox 75%,<br>ChitoGauze 69%,<br>and HemCon 53%;<br>differences were not<br>statistically significant.                                                                                      | Not<br>reported | Not reported      | QuikClot Combat<br>Gauze was rated<br>easiest to use by the<br>soldiers, the difference<br>was statistically<br>significant. When<br>compared to<br>nonmedical personnel,<br>active duty soldiers<br>with prior medical<br>training improved<br>hemostasis at 4<br>minutes by 20%, the<br>difference was<br>statistically significant. | "There is no significant<br>difference in hemostasis<br>between hemostatic<br>bandages for proximal<br>arterial hemorrhage.<br>Hemostasis significantly<br>improves between 2 and 4<br>minutes using direct<br>pressure and hemostatic<br>agents. Prior medical<br>training leads to 20%<br>greater efficacy when using<br>hemostatic dressings."     |
| Sohn et al.<br>2009 <sup>83</sup>     | Evaluate the efficacy of 3 chitosan-<br>based hemostatic dressings<br>(HemCon: 1-sided (OS), 2-sided<br>(DS), and powder (CP)) compared<br>with standard gauze when applied<br>to a standardized femoral artery<br>partial transection in a goat model.<br>All dressings were applied by U.S.<br>Army combat medics with previous<br>training on how to use the<br>dressings. Femoral artery injury. No<br>free bleeding period. Applied<br>dressings and manual pressure for<br>2 minutes. Dressings could be<br>reapplied if bleeding continued after<br>1st application. 123 active bleeding<br>arterial injuries were created in 62<br>goats. | Standard gauze failed to<br>achieve hemostasis in<br>99% of the injuries. At 2<br>minutes hemostasis was:<br>OS 36%, DS 44%, CP<br>38%. At 4 minutes<br>hemostasis was: OS<br>53%, DS 76%, CP 69%.<br>Differences were not<br>statistically significant. |                 |                   | Medics preferred the DS dressing.                                                                                                                                                                                                                                                                                                      | "Chitosan based bandages<br>are significantly more<br>effective at hemorrhage<br>control compared to<br>standard gauze field<br>dressings. The dual-sided<br>chitosan dressing<br>demonstrated better<br>hemorrhage control than the<br>one-sided dressing and the<br>chitosan powder, and was<br>less likely to fail despite<br>application errors." |

 Table C.1.
 Animal studies using 5 seconds or less of free bleeding time

| Reference                               | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % Hemostasis                                                                                                                                                                                                                                                                                                                                           | Survival     | Adverse<br>Events                                                                                                                                                                    | Other Outcomes                                                                                                                            | Author's Conclusions                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gustafson<br>et al. 2007 <sup>386</sup> | Test efficacy of HemCon Bandage<br>(HC) to standard gauze, 48-ply<br>(48PG). Both femoral arteries were<br>injured. Free bleeding for 5<br>seconds, then wound was packed<br>with standard gauze and removed<br>after 1 minute, allowed to bleed for<br>another 5 seconds and then<br>treatment dressings applied.<br>Random assignment of dressing<br>between arteries. 3 minutes of<br>manual pressure. If the dressing<br>failed in the first 30 minutes, a 2nd<br>application was allowed. If the 2nd<br>application failed, the alternative<br>dressing was applied, again for up<br>to 2 applications. | Chronic hemostasis was<br>considered maintenance<br>of hemostasis for 4<br>hours. Acute hemostasis<br>(30 minutes: PG48, 3 of<br>14 (21%); HC, 14 of 14<br>(100%); differences were<br>significant. 11 rescue<br>HCs were acutely<br>successful. Chronic<br>hemostasis: 48PG ,1 of<br>14 (7%); HC, 21 of 25<br>(84%); differences were<br>significant. |              |                                                                                                                                                                                      | No dressing-related<br>tissue damage was<br>noted during<br>histologically<br>examination.                                                | "Chitosan acetate<br>hemorrhage control<br>dressings provided superior<br>hemostasis to 48 ply gauze<br>in high inguinal femoral<br>arterial injuries. Chitosan-<br>based dressings may<br>provide prehospital<br>treatment options for<br>hemostasis in patients with<br>severe hemorrhagic arterial<br>injuries." |
| Wright et al.<br>2004 <sup>84</sup>     | This study reports on injuries related<br>to the use of QuikClot granules.<br>Wounds were created in skin,<br>semitendinosus muscle, liver,<br>spleen, femoral artery, and femoral<br>vein. None of the wounds were life<br>threatening. FloSeal, FastAct, and<br>granular QuikClot hemostatic<br>dressings were used. N=8 per<br>group. Three of the animals were<br>allowed to recover to monitor wound<br>healing.                                                                                                                                                                                        | Artery wound time to<br>hemostasis in minutes,<br>mean (SD): No agent<br>158 (123), QuikClot 145<br>(144); not significantly<br>different.                                                                                                                                                                                                             | No<br>deaths | QuikClot<br>caused<br>extensive tissue<br>burns and<br>interfered with<br>proper wound<br>healing. The<br>femoral arteries<br>suffered thermal<br>injuries resulting<br>in necrosis. | Blood loss: QuikClot<br>significantly lowered<br>bleeding in vein<br>wounds but not artery<br>wounds, compared<br>with no-agent controls. | "Topical administration of a<br>granular mineral hemostatic<br>agent to a variety of wounds<br>in an experimental swine<br>model resulted in thermal<br>tissue injury and necrosis.<br>Suggestions for reducing the<br>extent of injury with this<br>product are offered."                                          |

 Table C.1. Animal studies using 5 seconds or less of free bleeding (continued)

### Animal studies using 30 or 45 seconds of free bleeding time

Only hemostatic dressings tested in three or more studies or in models of special physiologic conditions are discussed here. All studies using 30 to 45 seconds of free bleeding time are summarized in a table in Appendix C.

QuikClot zeolite/kaolin clay-based dressing comes in granule, powder, and sponge form. These dressings were examined in six studies and showed poor hemostasis and survival properties.<sup>74,75,78-80,387</sup>

- Kheirabadi et al. 2009a<sup>74</sup> reported that the QuikClot advanced clotting sponge (ACS) failed to achieve hemostasis in any animals leading to animal deaths from exsanguination and therefore discontinued use of this dressing in the experiment.
- Two studies reported that QuikClot ACS was better than standard gauze:
  - Clay et al.<sup>80</sup> reported that 50% of QuikClot ACS treated animals survived, which was better than standard gauze (all animals died).
  - Arnaud et al.<sup>75</sup> compared QuikClot ACS with HemCon, WoundStat, Celox, and standard gauze and reported that the hemostatic dressings were significantly better than standard gauze for hemostasis and animal survival with WoundStat and Celox being the most effective (85% survival compared with 60% for ACS, 25% for HemCon, and 13% for standard gauze).
- One study reported that QuikClot powder and standard gauze had similar, but very poor hemostasis rates: Acheson et al.<sup>79</sup> compared QuikClot powder, HemCon, and standard gauze. Hemostasis was poor (0% for standard gauze and QuikClot, 7% for HemCon) and no animals survived when treated with these dressings.
- QuikClot granules were inferior to WoundStat in two studies:
  - Carraway<sup>387</sup> reported that QuikClot granules were inferior to WoundStat for hemostasis and survival (0% for QuikClot vs. 100% for WoundStat for both outcomes).
  - Ward et al.<sup>78</sup> compared QuikClot granules, QuikClot ACS, HemCon, and WoundStat with standard gauze. WoundStat showed better hemostasis and survival (100% for WoundStat vs. 0% for standard gauze, QuikClot Granules, and QuikClot ACS, and 20% for HemCon).

All the studies using QuikClot granules reported that a large amount of heat was generated in the wound.

QuikClot Combat Gauze (zeolite/kaolin-based dressing) was examined in three studies and showed good hemostasis and survival properties.<sup>71-73</sup>

- Rall et al.<sup>71</sup> reported that QuikClot Combat Gauze and Combat Gauze XL both provided effective hemostasis at 3 minutes (30% and 80%, respectively) and survival (60% and 70%, respectively) while creating no significant tissue damage.
- Schwartz et al.<sup>72</sup> found no difference comparing QuikClot Combat Gauze with ChitoGauze (HemCon) in hemostasis (all greater than 50%) or survival (all animals survived).
- Kheirabadi et al. 2009b<sup>73</sup> reported that QuikClot Combat Gauze was superior to both the HemCon bandage and Celox-D. This study compared QuikClot Combat Gauze with an advanced HemCon bandage, Celox-D, and standard gauze, and QuikClot Combat Gauze achieved 30% hemostasis compared with 0% for the HemCon bandage and Celox-D and 80% survival for QuikClot Combat Gauze compared with 0% survival for other two. The

authors recommended that QuikClot Combat Gauze replace HemCon bandages on the battlefield, based on their study results.

HemCon (chitosan-based dressing) was examined in 10 studies and showed broadly divergent results for hemostasis and survival: some studies reported 0% survival while others reported 100% survival.<sup>71-80</sup>

Kheirabadi et al. 2009a<sup>74</sup> reported that HemCon achieved 60% initial hemostasis but 9 of 10 animals died. As noted above, Acheson et al.<sup>79</sup> reported that hemostasis with HemCon was poor (7% for HemCon and 0% for standard gauze and QuikClot granules) and no animals survived when treated with these dressings. But another study noted much better survival: Rall et al.<sup>71</sup> reported that HemCon ChitoGauze provided 60% hemostasis and 70% survival with no significant tissue damage.

Two studies differed in their comparison of HemCon with QuikClot Combat Gauze:

- As noted above Schwartz et al.<sup>72</sup> reported that ChitoGauze (HemCon) and QuikClot Combat Gauze and were equally effective at hemostasis and preventing deaths.
- But Kheirabadi et al. 2009b<sup>73</sup> reported (as noted above) that HemCon bandage had worse results than QuikClot Combat Gauze.

Two studies reported that HemCon performed better than standard gauze:

- Clay et al.<sup>80</sup> reported that HemCon performed better, with 67% of HemCon-treated animals surviving compared with 0% for standard gauze–treated animals.
- Arnaud et al.<sup>75</sup> reported that HemCon was similar to QuikClot ACS and WoundStat and significantly better than standard gauze.

Three studies reported that HemCon had results similar to standard gauze:

- Sambasivan et al.<sup>388</sup> reported that ChitoFlex (HemCon) was similar to standard gauze for hemostasis (14% vs. 50%) and survival (70% vs. 100%).
- Englehart et al.<sup>77</sup> also reported that HemCon was similar to standard gauze for hemostasis (20% versus 50%) and survival (70% versus 90%).

As noted above, Ward et al.<sup>78</sup> reported that HemCon was similar to standard gauze, QuikClot granules, and QuikClot ACS, but inferior to WoundStat.

Celox (chitosan-based dressing) was examined in five studies and showed good hemostasis and survival properties except for one study.<sup>71,73-75,80</sup>

- Kheirabadi et al. 2009a<sup>74</sup> reported that Celox achieved 70% initial hemostasis and 60% of the animals survived.
- Rall et al.<sup>71</sup> reported that Celox produced 70% hemostasis and 90% survival.
- Clay et al.<sup>80</sup> reported that 83% of Celox-treated animals survived compared with 0% for standard gauze-treated animals.
- As noted above Arnaud et al.<sup>75</sup> reported that Celox was significantly better than standard gauze for hemostasis and animal survival, with WoundStat and Celox being the most effective with 85% survival.
- The outlier was the Kheirabadi et al. 2009b<sup>73</sup> study that, as noted above, reported that QuikClot Combat Gauze (80% survival) was superior to Celox-D (0% survival).

WoundStat (smectite/nonmetallic clay-based dressing) was examined in five studies and showed consistently good results for hemostasis and survival.<sup>74,75,78,80,387</sup>

• Kheirabadi et al.<sup>74</sup> reported that WoundStat prevented death in all 10 animals tested and was more effective than HemCon or QuikClot ACS in preventing death. However the authors noted that WoundStat produced moderate to severe endothelial injuries and multifocal vein necrosis.

- Clay et al.<sup>80</sup> reported that 100% of WoundStat treated animals survived compared with 0% for standard gauze–treated animals.
- Arnaud et al.<sup>75</sup> reported that WoundStat was similar to ACS and HemCon and significantly better than standard gauze.
- As mentioned above, Carraway<sup>387</sup> reported that WoundStat was superior to QuikClot granules.
- Also as noted above, Ward et al.<sup>78</sup> reported that WoundStat was superior to QuikClot granules, QuikClot ACS, HemCon, and standard gauze.

Despite the favorable hemostasis and survival results reported in studies of WoundStat, it is not used by the U.S. Military because of its high potential for tissue injury. Gerlach et al.<sup>34</sup> evaluated the extent of tissue damage induced by WoundStat compared with standard gauze in a study designed to allow all animals to survive the initial 45 seconds of blood loss. At each of five time points after surgery—1, 2, 3, 4, and 5 weeks—three animals that had been treated with WoundStat were euthanized. Examination of the tissues showed poor wound healing with extensive fibrosis, inflammation, and endothelial degeneration and necrosis. The results of this study lead to the discontinuation of WoundStat by the U.S. Military.

The 30- or 45-second free bleeding periods were used in several studies with unique designs and procedures intended to test hemostatic dressings in special situations. MacIntyre et al.<sup>389</sup> combined a tourniquet with standard gauze, HemCon, QuikClot granules, and Celox. After the tourniquet and direct pressure were released, standard gauze did not achieve hemostasis while effective hemostasis was found using HemCon (100%), QuikClot granules (80%), and Celox (60%). Two studies used a complete severing of the femoral artery and vein to produce a wound to "simulate the ragged, lacerated muscle of the cavity associated with high-velocity projectile tracts." Devlin et al.<sup>390</sup> used this model to compare QuikClot ACS, HemCon ChitoFlex, Celox, and standard gauze. All dressings were effective at stopping initial hemorrhage and 83% of the test animals survived when using standard gauze, QuikClot ACS, or HemCon ChitoFlex; 75% survived when using Celox. Littlejohn et al.<sup>391</sup> used this model to compare standard gauze with WoundStat, Celox, and QuikClot Combat Gauze. All the dressings, including standard gauze, were effective at producing initial hemostasis and differences in survival were not statistically significant, except that Celox (88% survival) was significantly better than WoundStat (56% survival). The authors suggested that proper wound packing and pressure may be more important than the use of hemostatic dressings in these types of wounds.

Watters et al.<sup>392</sup> used a study design with no external pressure to replicate care under fire. The study compared QuikClot Combat Gauze with Celox Gauze and standard gauze and reported that all animals survived with no differences in hemostasis. The authors concluded that advanced hemostatic dressings did not outperform standard gauze in a care-under-fire scenario.

Kheirabadi et al.<sup>393</sup> tested WoundStat, QuikClot Combat Gauze, and standard gauze in a model of hypothermia and dilution coagulopathy. WoundStat was ineffective in this model (bleeding stopped in 2 of 15 animals) while QuikClot Combat Gauze was only partially effective (bleeding stopped in 5 of 15 animals), although most animals survived the experiment.

| Reference                             | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % Hemostasis                                                                                                                                                                                                 | Survival                                                                                                | Adverse Events                                                                                                                                                                                                             | Other Outcomes                                                                                                                                                                                                                                                                                                                       | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rall et al.<br>2013 <sup>71</sup>     | Determine the efficacy of novel<br>hemostatic gauze products as<br>compared to the current<br>Committee on Tactical Combat<br>Casualty Care standard,<br>QuikClot Combat Gauze<br>(QCG). QuikClot Combat<br>Gauze XL (QCX), Celox Gauze<br>(CEL), Celox Trauma Gauze<br>(CTG), and HemCon<br>ChitoGauze (HCG). N=10 per<br>group. Femoral artery injury.<br>Free bleeding for 45 seconds.<br>Manual pressure for 3 minutes.<br>500 mL Hextend. Observed for<br>150 minutes.                     | Hemostasis after 3<br>minutes: QCG 30%,<br>CTG 30%, QCX 80%,<br>CEL 70%, HCG 60%;<br>QCX was significantly<br>different from QCG<br>and CTG.                                                                 | Survival: QCG<br>60%, CEL 90%,<br>QCX 70%, HCG<br>70%, CTG 50%;<br>differences were<br>not significant. | No significant<br>damage was<br>observed in any of<br>the tissues. CEL<br>left particles in the<br>tissue.                                                                                                                 | Blood loss was<br>lowest in the QCX<br>and CEL groups,<br>but differences<br>were not<br>significant. All<br>dressings retained<br>hemostasis with<br>leg movement.<br>Free bleeding<br>occurred with all<br>dressings when<br>gently removed,<br>suggesting the<br>gauze must<br>remain in place to<br>be continually<br>effective. | "These results suggest<br>that the novel<br>hemostatic devices<br>perform at least as<br>well as the current<br>Committee on Tactical<br>Combat Casualty Care<br>standard for point-of-<br>injury hemorrhage<br>control. Despite their<br>different compositions<br>and sizes, the lack of<br>clear superiority of any<br>agent suggests that<br>contemporary<br>hemostatic dressing<br>technology has<br>potentially reached a<br>plateau for efficacy." |
| Watters et al.<br>2011 <sup>392</sup> | The goal of this study was to<br>determine whether these<br>advanced dressings are<br>superior to standard gauze in<br>an animal model that replicates<br>care-under-fire scenarios.<br>Packing with standard gauze<br>(SG), QuikClot Combat Gauze<br>(CG), or Celox Gauze (XG)<br>without external pressure. N=8<br>per group. Femoral artery<br>injury. Free bleeding for 30<br>seconds, then dressing was<br>applied through a pool of blood<br>into the wound. Observed for<br>120 minutes. | Dressing failure: XG<br>50%, CG 25%, SG<br>0%; differences were<br>not significant. Time to<br>failure mean and (SE)<br>in seconds: XG 200.0<br>(200.0), CG 416.3<br>(118.2); no significant<br>differences. | All animals<br>survived the test<br>after 120 minutes<br>before being<br>euthanized.                    | Inflammation,<br>necrosis, or<br>deposition of<br>dressing particles<br>in vessel walls was<br>not observed. No<br>histologic or<br>ultrastructural<br>differences were<br>found between any<br>of the study<br>dressings. | SG dressings<br>packed<br>significantly faster<br>than either CG or<br>XG.                                                                                                                                                                                                                                                           | "Advanced hemostatic<br>dressings do not<br>perform better than<br>conventional gauze in<br>an injury and<br>application model<br>similar to a care under<br>fire scenario."                                                                                                                                                                                                                                                                              |

### Table C.2. Studies using 30 or 45 seconds of free bleeding

| Reference                               | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Hemostasis                                                                                        | Survival                                                                                                                                                                                      | Adverse Events                                                                                        | Other Outcomes                                                                                                                                                                                                                                                                                      | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MacIntyre<br>et al. 2011 <sup>389</sup> | Examine the combination of a tourniquet along with Standard gauze, QuikClot, HemCon, and Celox. Femoral artery and vein injury. Free bleeding for 30 seconds then tourniquet applied to stop bleeding. The dressing was applied with manual pressure for 3 minutes. The tourniquet and direct pressure were released. If bleeding occurred the procedure was considered a failure. N=10 per group.                                                                                                                                                                                                                                                     | Hemostasis (n of 10<br>for each): Standard<br>gauze 0%, Celox 60%,<br>QuikClot 80%,<br>HemCon 100%. | All animals<br>survived, but the<br>study did not have<br>a lengthy<br>observation period.                                                                                                    | No apparent<br>complications<br>during the study.<br>QuikClot generated<br>a large amount of<br>heat. |                                                                                                                                                                                                                                                                                                     | "Use of hemostatic<br>dressings in<br>conjunction with a<br>tourniquet may reduce<br>tourniquet times and<br>improve outcomes in<br>peripheral vascular<br>injury and warrants<br>further study."                                                                                                                                                                            |
| Devlin et al.<br>2011 <sup>390</sup>    | Compare ChitoFlex bandage<br>(CF), QuikClot ACS dressing<br>(QC), CELOX free granule<br>formulation (CX) and standard<br>gauze (SD) in their<br>effectiveness to control arterial<br>bleeding from a lethal non-<br>cavitary groin wound. A groin<br>injury was created to simulate<br>the ragged, lacerated muscle of<br>the cavity associated with high-<br>velocity projectile tracts.<br>Femoral artery and vein were<br>completely severed. Free<br>bleeding for 30 seconds.<br>Dressings were applied with 3<br>minutes of manual pressure.<br>Followed by application of a<br>pressure bandage. Observed<br>for 180 minutes. N=12 per<br>group. | All hemostatic agents<br>and standard gauze<br>were effective at<br>stopping initial<br>hemorrhage. | Survival rate: 10 of<br>12 (83%) SD<br>animals, 10 of 12<br>(83%) CF animals,<br>10 of 12 (83%) QC<br>animals, and 9 of<br>12 (75%) CX<br>animals; there was<br>no significant<br>difference. |                                                                                                       | Mean total blood<br>loss: 31.8 mL/kg<br>for SD (range<br>10.1–52.7 mL/kg),<br>27.4 mL/kg for CF<br>(range 16.3–48.4<br>mL/kg), 32.0<br>mL/kg for QC<br>(range 12.6–49.6<br>mL/kg), and 34.0<br>mL/kg for CX<br>(range 17.5–52.1<br>mL/kg);<br>differences were<br>not statistically<br>significant. | "In our study of limited-<br>access extremity<br>bleeding, ChitoFlex<br>performed equally well<br>in mitigating blood loss<br>and promoting<br>survival. The ChitoFlex<br>dressing is an equally<br>effective alternative to<br>currently available<br>hemostatic agents.<br>However, no agents<br>were superior to<br>standard gauze in our<br>model of limited<br>access." |

Table C.2. Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                                | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | % Hemostasis                                                                                                                                                                                                                                                                                                                                                                 | Survival                                                                                                                                                                                      | Adverse Events | Other Outcomes                                                                                                                                                                                                                                                 | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schwartz et al.<br>2011 <sup>72</sup>    | Compare the effectiveness of<br>ChitoGauze (HemCon) and<br>QuikClot Combat Gauze.<br>Femoral artery injury. Free<br>bleeding for 45 seconds. Then<br>dressings applied followed by<br>compression with 75-lb<br>dumbbell for 2 minutes.<br>Pressure was released and<br>dressings left in place for 180<br>minutes. Hextend 500 mL.<br>Standard gauze with<br>compression was not studied.                                                                                                                                                                                                                                                                              | Hemostasis was<br>defined as no residual<br>blood pooling or<br>seepage around the<br>dressing. Immediate<br>hemostasis: 4 of 7<br>QuikClot Combat<br>Gauze, 5 of 7<br>ChitoGauze;<br>difference was not<br>statistically significant.<br>Time to hemostasis,<br>mean: QuikClot<br>Combat Gauze 32.4<br>minutes, ChitoGauze<br>13.1 minutes; not<br>statistically different. | All animals<br>survived.                                                                                                                                                                      |                | Dressing<br>application was<br>considered a<br>failure if the<br>animal died<br>before 180<br>minutes, pCo <sub>2</sub><br>was less than 15<br>mm Hg, or mean<br>arterial pressure<br>dropped below 20<br>mm Hg. Blood<br>loss and saline<br>use were similar. | "ChitoGauze and<br>Combat Gauze appear<br>to be equally<br>efficacious in their<br>hemostatic properties,<br>as demonstrated in a<br>porcine hemorrhage<br>model."                                                                                                                                                                                              |
| Littlejohn et al.<br>2011 <sup>391</sup> | Examine 4 hemostatic agents,<br>granular agents WoundStat<br>(WS), Celox-A (CA), rolled<br>QuikClot Combat Gauze (CG),<br>and flexible rolled bandage<br>Chitoflex (CF) to standard<br>gauze (SG) in a model<br>specifically designed to<br>simulate the ragged, lacerated<br>muscle of the cavity associated<br>with high-velocity projectile<br>tracts and the complete<br>severing of the femoral artery<br>and vein. Free bleed for 45<br>seconds with no application of a<br>pressure dressing after<br>applying the hemostatic<br>dressing. Direct manual<br>pressure was applied for 5<br>minutes then released.<br>Observed for 180 minutes.<br>N=16 per group. | Any bleeding that<br>occurred in the first 5<br>minutes after release<br>of manual pressure<br>was considered a<br>failure of initial<br>hemostasis. CA, 16 of<br>16; CF, 13 of 16; CG,<br>15 of 16; SG, 13 of 16;<br>WS, 11 of 16; WS was<br>significantly different<br>from CA.                                                                                            | Deaths: CA, 2 of<br>16; CF, 3 of 16;<br>CG, 4 of 16; SG, 3<br>of 16; WS, 7 of 16;<br>WS was<br>significantly<br>different from CA.<br>Survival: CA 88%,<br>CF 81%, CG 75%,<br>SG 81%, WS 56%. |                |                                                                                                                                                                                                                                                                | In this swine model of<br>uncontrolled<br>penetrating<br>hemorrhage, SG<br>dressing performed<br>similarly to the<br>hemostatic agents<br>tested. This supports<br>the concept that<br>proper wound packing<br>and pressure may be<br>more important than<br>the use of a<br>hemostatic agent in<br>small penetrating<br>wounds with severe<br>vascular trauma. |

Table C.2. Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                                | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % Hemostasis                                                                                                                                                                                                                                                                                                                           | Survival                                                                                                                                                    | Adverse Events | Other Outcomes                                                                                                                                                                                                                          | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kheirabadi<br>et al. 2010 <sup>393</sup> | Compare WoundStat (WS) with<br>QuikClot Combat Gauze (CG)<br>and control gauze (GZ) in<br>coagulopathic subjects and<br>assess the risk/benefit in<br>trauma patients with acquired<br>coagulopathy. Also examined<br>FAST, a biological dressing.<br>Spleens were removed.<br>Hypothermia and dilutional<br>coagulopathy were induced.<br>60% of the circulating blood<br>volume was withdrawn and<br>replaced with an equal volume<br>of Hextend solution. Femoral<br>artery injury followed by 30<br>seconds free bleeding.<br>Dressings were applied<br>followed by 2 minutes of direct<br>manual pressure (except for<br>FAST which received 3<br>minutes). Dressing could be<br>reapplied 3 minutes after<br>compression was stopped.<br>Hemostasis was observed for<br>the next 180 minutes. N was 12<br>to 15 per group. | Stable hemostasis:<br>GZ, 1 of 12; WS, 2 of<br>15; CG, 5 of 15; FAST,<br>10 of 13; FAST was<br>significantly different<br>from GZ and WS.<br>Total time bleeding<br>stopped in minutes,<br>mean (SEM): GZ 13.7<br>(8.9), WS 28.2 (16.2),<br>CG 75.8 (21.6), FAST<br>113.3 (25); FAST was<br>significantly different<br>from GZ and WS. | GZ, 11 of 12; WS,<br>13 of 15; CG, 9 of<br>15; FAST, 3 of 13;<br>FAST was<br>significantly<br>different from GZ<br>and WS.                                  |                |                                                                                                                                                                                                                                         | "The tissue sealant<br>property of WS is<br>apparently mediated<br>by clot formation in the<br>wound; therefore, it<br>was ineffective under<br>coagulopathic<br>conditions. CG was<br>partially effective in<br>maintaining blood<br>pressure up to 1 hour<br>after application. FAST<br>dressing showed the<br>highest efficacy<br>because of the<br>exogenous delivery of<br>concentrated<br>fibrinogen and<br>thrombin to the wound,<br>which bypasses<br>coagulopathy and<br>secures hemostasis." |
| Clay et al.<br>2010 <sup>80</sup>        | Compare Enhanced HemCon<br>(HC), QuikClot ACS+<br>(advanced clotting sponge),<br>Celox (CX), and WoundStat<br>(WS), with a standard army<br>field dressing (AFD). Spleen<br>was removed. Femoral artery<br>and vein injury. Free bleed 45<br>seconds then dressings applied<br>followed by manual pressure for<br>up to 6 minutes. Pressure<br>released and animals observed<br>for 120 minutes. N=6 per group.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        | WS, 100%; CX,<br>83%; HC, 67%;<br>ACS+, 50%; AFD.<br>0%; WS was<br>significantly<br>different from<br>ACS+, all dressing<br>were different from<br>control. |                | Blood loss mL/Kg,<br>mean (SD): HC,<br>10.0 (3.6); ACS+,<br>15.8 (3.6); CX,<br>12.9 (4.9); WS,<br>4.6 (2.3); AFD,<br>27.0 (2.7); WS<br>was significantly<br>different from<br>ACS+, all<br>dressings were<br>different from<br>control. | "All hemostatic<br>dressings result in<br>significantly less blood<br>loss and improved<br>survival over standard<br>gauze dressing."                                                                                                                                                                                                                                                                                                                                                                  |

| Table C.2. Studies using 30 or 45 seconds of free bleeding (continu |
|---------------------------------------------------------------------|
|---------------------------------------------------------------------|

| Reference                            | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % Hemostasis                        | Survival                 | Adverse Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other Outcomes                                                 | Author's<br>Conclusions                                                                                                                                                                 |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gerlach et al.<br>2010 <sup>34</sup> | Compare WoundStat (WS) with<br>plain gauze in a severe<br>extremity artery injury to<br>determine extent of tissue<br>damage and ability for wound<br>healing and survival up to 5<br>weeks after surgery. Femoral<br>artery injury. N=18 WS and n=3<br>gauze. 45 seconds free<br>bleeding. Manual pressure for 3<br>minutes followed by<br>compression from a sandbag<br>for 1 hour. 500 mL Hextend.<br>Reapplication allowed if<br>rebleeding occurred during the<br>1-hour period. Gauze control<br>group had manual pressure for<br>1 hour. WS and gauze were<br>removed from the wounds after<br>1 hour and the wounds were<br>irrigated with saline. Arteries<br>were repaired with a saphenous<br>vein patch. At each time point<br>of baseline and 1, 2, 3, 4, and 5<br>weeks after surgery, 3 WS<br>animals were euthanized. | All animals achieved<br>hemostasis. | All animals<br>survived. | WS particles were<br>visible in treated<br>wounds and were<br>surrounded by<br>fibrous tissue.<br>Sections of the<br>femoral artery from<br>the injured legs in<br>the WS group had<br>multifocal to<br>diffuse, moderate<br>to severe, and<br>chronic<br>fibrogranulomatous<br>inflammation<br>except at baseline.<br>Variable amounts<br>of endothelial<br>degeneration and<br>necrosis were<br>seen. Femoral<br>nerves in WS<br>group showed<br>abundant<br>perineural<br>fibrogranulomatous<br>inflammation with<br>mild-to-moderate<br>axonal<br>degeneration.<br>Given these<br>histological findings<br>the authors<br>recommend not<br>using WS<br>assuming other<br>options are<br>available. | WS was<br>moderately<br>difficult to remove<br>from the wound. | "Although an effective<br>hemostatic agent, WS<br>use was associated<br>with a substantial local<br>inflammatory response<br>and neurovascular<br>changes up to 5<br>weeks postinjury." |

### Table C.2. Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                                | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % Hemostasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Survival                                                                                                                                        | Adverse Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other Outcomes                                                                                                                                                                                                                                                                                                                                                                                        | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kheirabadi<br>et al. 2009a <sup>74</sup> | Determine the efficacy and<br>acute safety of 3 new<br>hemostatic products in<br>granular/powder form.<br>Enhanced HemCon bandage<br>(HC), QuikClot advanced<br>clotting sponge plus (ACS),<br>WoundStat (WS), super quick<br>relief (SQR), and Celox (CX).<br>HC was considered the control.<br>Spleens were removed.<br>Femoral artery injury. Free<br>bleeding for 45 seconds then<br>dressing applied. 500 mL<br>Hextend. The compression or<br>packing and compression were<br>stopped after 2 minutes and<br>hemostasis was observed for 3<br>minutes without removing the<br>laparotomy gauze. Dressings<br>could be applied a second time.<br>Observed for 180 minutes.<br>N=10 per group. | ACS treatment failed<br>to produce hemostasis<br>in 6 consecutive<br>experiments, resulting<br>in hemorrhage and<br>exsanguination of 5<br>animals. Therefore,<br>further testing of this<br>material was<br>discontinued and the<br>related data were<br>excluded for statistical<br>analysis. Initial<br>hemostasis: HC, 60%;<br>WS, 60%; CX, 70%;<br>SQR, 90%; not<br>significantly different.<br>Initial hemostasis was<br>considered to occur<br>when bleeding was<br>stopped for at least 3<br>minutes after<br>compression. | Deaths: HC, 9 of<br>10 died; WS, none<br>died; CX, 4 died;<br>SQR, 3 died; WS<br>and SQR were<br>significantly<br>different from the<br>others. | WS, CX, and SQR<br>produced moderate<br>to severe<br>endothelial injuries<br>along with<br>moderate vascular<br>and perivascular<br>changes, including<br>multifocal vein<br>necrosis. SQR was<br>considered the<br>most damaging.<br>The interaction of<br>SQR with blood<br>produces<br>significant heat<br>with persistent high<br>temperatures<br>causing significant<br>damage to<br>underlying tissues<br>including nerve<br>structures. The<br>granular<br>hemostatic<br>products,<br>particularly those<br>with procoagulant<br>activities (WS and<br>SQR) may pose a<br>potential risk for<br>thromboembolism<br>that should be<br>further investigated<br>in survival studies. | Total time<br>bleeding stopped<br>in minutes, mean<br>(SD): ACS, 10.6<br>(10); HC, 2 (18);<br>CX, 108.6 (29);<br>SQR, 125.5 (24);<br>WS, 166.0 (7.5);<br>CX, SQR, WS<br>were significantly<br>different from<br>ACS and HC. The<br>most difficult<br>agent to remove<br>was SQR. Some<br>particles that<br>formed a scab to<br>stop the bleeding<br>were essentially<br>embedded into<br>the tissues. | "The new hemostatic<br>agents are significantly<br>more effective in<br>treating arterial<br>hemorrhage than<br>currently deployed<br>products [HemCon<br>dressing or QuikClot<br>granular products].<br>Among them, WS<br>granules appear to be<br>most efficacious,<br>followed by SQR and<br>CX powders. The<br>clinical significance of<br>tissue damage caused<br>by these agents and<br>any potential risk of<br>embolism with<br>procoagulant<br>granular/powder<br>products are unknown<br>and warrant survival<br>studies." |

### Table C.2. Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                                | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % Hemostasis                                                                                                                                                                                                                                                                      | Survival                                                                                                                                                                                                                                                                                  | Adverse Events                                                                                                                                                                                                                  | Other Outcomes | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kheirabadi<br>et al. 2009b <sup>73</sup> | Evaluate QuikClot Combat<br>Gauze (CG), TraumaStat (TS),<br>Celox-D (CXb), advanced<br>HemCon bandage (HCs), and<br>placebo gauze (PG). Spleen<br>was removed. Femoral artery<br>injury. Free bleeding for 45<br>seconds, dressings applied,<br>manual pressure for 2 minutes<br>with 500 mL Hextend, if<br>rebleeding occurred after<br>release of manual pressure<br>dressings were reapplied. 2<br>more minutes of manual<br>compression. Observed for 180<br>minutes.                                       | Hemostasis defined as<br>secure hemostasis for<br>at least 3 minutes<br>immediately after<br>treatment. HCs and<br>CXb had 0%<br>hemostasis; CG, 30%;<br>TS, 10%; PG, 17%.<br>The HC and CXb<br>groups were<br>discontinued and not<br>included in any<br>statistically analysis. | HCs and CXb had<br>0% survival, n=6<br>for each group. TS,<br>2 of 10, (20%); CG,<br>8 of 10, (80%); PG,<br>2 of 6, (33%). CG<br>was significantly<br>different from TS<br>and PG.                                                                                                        | Complete removal<br>of CXb particles<br>from the wound<br>required more<br>effort than other<br>dressings and<br>pieces of the bags<br>(undissolved), and<br>some dry chitosan<br>material were often<br>found in the<br>wound. |                | "CG was the most<br>effective dressing<br>tested in this arterial<br>hemorrhage model.<br>The hemostatic<br>property of CG is<br>attributed to its raw<br>material (nonwoven<br>Rayon and polyester<br>blend), kaolin coating,<br>and the large surface<br>area (3 inch / 4 yd) of<br>this absorbent sponge.<br>CG is now<br>recommended as the<br>first line of treatment<br>for life-threatening<br>hemorrhage on the<br>battlefield, replacing<br>HC." |
| Arnaud et al.<br>2009 <sup>75</sup>      | Evaluate hemostatic dressings<br>in a severe vascular puncture<br>injury model: QuikClot ACS+,<br>Celox (CEL), Instaclot (IC),<br>WoundStat (WS), Alpha<br>Bandage (AB), BloodStop<br>(BLS), X-Sponge (XS),<br>Chitoflex (CHI), HemCon (HC),<br>Polymem FP-21 (FP-21),<br>standard gauze (SD). N=8 per<br>group. Femoral artery injury.<br>Free bleeding for 45 seconds<br>then applied test dressing.<br>Manual pressure for 5 minutes.<br>At 15 minutes given 500 mL<br>Hextend. Observed for 180<br>minutes. | Rebleeding: Bleeding<br>upon the release of<br>manual compression<br>ranged from 50% to<br>62.5% for<br>XS, WS, CEL, and<br>ACS, and 75% to<br>100% for all other<br>dressings.                                                                                                   | Survival rate: SD,<br>13%; WS, 85%;<br>CEL, 85%; XS,<br>70%; ACS+, 60%;<br>IC, 50%; AB, 50%;<br>CHI, 25%; FP-21,<br>25%; HC, 25%;<br>BLS, 25%. All<br>dressing were<br>significantly better<br>than SD. WS, CEL,<br>XS, and ACS+<br>were significantly<br>better than other<br>dressings. |                                                                                                                                                                                                                                 |                | "The findings indicated<br>that the efficacy of<br>Woundstat, Celox, X-<br>Sponge, and ACS+<br>were similar and<br>superior in improving<br>survival, hemostasis,<br>and maintenance of<br>mean arterial pressure<br>in an actively bleeding<br>wound caused in this<br>severe vascular injury<br>model."                                                                                                                                                 |

Table C.2. Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                               | Methods                                                                                                                                                                                                                                                                                                                                                                                                                               | % Hemostasis                                                                                                                                                    | Survival                                                                                                                                    | Adverse Events | Other Outcomes                                                                                                                                                                                 | Author's<br>Conclusions                                                                                                                                                                                                                                      |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kilbourne et al.<br>2009 <sup>394</sup> | Evaluate the hemostatic<br>efficacy of a newly modified<br>amylopectin powder<br>(Hemostasis, LLC, St. Paul,<br>MN) compared with standard<br>gauze. Femoral artery injury,<br>free bleeding for 45 seconds,<br>then dressings were applied.<br>Manual compression for 3<br>minutes. Dressings could be<br>applied a second time with 3<br>minutes additional manual<br>pressure. 180 minute<br>observation period. N=6 per<br>group. | Hemostasis: gauze,<br>0%; powder, 100%.<br>9 minutes for the<br>powder. Gauze group<br>did not achieve<br>hemostasis.                                           | All animals in the<br>gauze group died.<br>All survived in the<br>powder group.                                                             |                | Median post-<br>treatment blood<br>loss: powder 275<br>mL, gauze 1,312<br>mL.                                                                                                                  | "Modified amylopectin<br>powder demonstrates<br>the ability to control<br>major vascular<br>bleeding in a lethal<br>arterial injury model<br>during a 3-hour<br>period."                                                                                     |
| Sambasivan<br>et al. 2009 <sup>76</sup> | Compare TraumaStat with<br>Chitoflex (HemCon, Inc.), a<br>chitosan dressing and standard<br>gauze, with a 30-second<br>application time to better reflect<br>the time available to apply a<br>dressing in a tactical combat<br>scenario. Femoral artery and<br>vein injury. Free bleeding for 30<br>seconds. Dressings applied and<br>held for 30 seconds. Observed<br>for 120 minutes. N=8 per group.                                | TraumaStat, 8 of 8<br>(100%); Chitoflex, 1 of<br>7 (14%); standard<br>gauze, 4 of 8 (50%).<br>TraumStat was<br>significantly different<br>from other dressings. | TraumaStat: no<br>deaths. Chitoflex: 3<br>of 7 died. Standard<br>gauze: no deaths.<br>Differences were<br>not statistically<br>significant. |                | _                                                                                                                                                                                              | "TraumaStat<br>performed significantly<br>better than Chitoflex<br>and standard gauze in<br>controlling<br>hemorrhage from a<br>severe groin injury in<br>swine."                                                                                            |
| Englehart<br>et al. 2008 <sup>77</sup>  | Compare the hemostatic<br>properties of TraumaStat to<br>HemCon and gauze dressing in<br>a lethal groin injury model of<br>severe uncontrolled<br>hemorrhage in swine. Femoral<br>artery and vein injury. Free<br>bleeding for 30 seconds.<br>Dressings were applied and<br>pressure held for 5 minutes.<br>Observed for 120 minutes.<br>N=10 per group.                                                                              | Dressing failures:<br>TraumaStat, 1 of 10;<br>HemCon, 8 of 10;<br>gauze, 5 of 10.<br>TraumaStat was<br>significantly different<br>from HemCon.                  | Deaths:<br>TraumaStat, 1 of<br>10; HemCon, 3 of<br>10; gauze, 1 of 10.<br>Differences were<br>not significant.                              |                | Blood loss after<br>treatment,<br>median:<br>TraumaStat, 117<br>mL; HemCon, 774<br>mL; gauze<br>dressing, 268 mL.<br>TraumaStat was<br>significantly<br>different from<br>HemCon and<br>gauze. | "TraumaStat was<br>superior to HemCon<br>and gauze dressings<br>in controlling bleeding<br>from a severe groin<br>injury. TraumaStat<br>may be a better<br>hemostatic dressing<br>for control of active<br>hemorrhage than<br>current standards of<br>care." |

### Table C.2. Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                         | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % Hemostasis                                                                                                                                                                    | Survival                                                                                                                                         | Adverse Events                                                                                                  | Other Outcomes                                                             | Author's<br>Conclusions                                                                                                                                                                                                                               |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carraway<br>2008 <sup>387</sup>   | Compare WoundStat (WS) to<br>QuikClot granules (QCG).<br>Femoral artery injury. Free<br>bleeding for 45 seconds then<br>dressings applied. Manual<br>pressure for 3 minutes. 500 mL<br>Hextend. A second dressing<br>application was allowed if<br>rebleeding occurred. Observed<br>for 120 minutes.                                                                                                                                                                                                                                                                         | All WS animals<br>achieved hemostasis<br>with no second<br>application. All QCG<br>animals needed a 2nd<br>application, but<br>hemostasis was not<br>achieved in any<br>animal. | All WS animals<br>survived but no<br>QCG animals<br>survived; difference<br>was statistically<br>significant.                                    | QCG animals<br>showed a<br>significantly higher<br>wound<br>temperature: mean<br>64 °C vs. 33 °C.               |                                                                            | "WS consisting of just<br>the smectite mineral<br>was superior to QCG<br>tested in this model.<br>Additional study is<br>warranted to<br>determine its potential<br>for use in combat and<br>civilian trauma."                                        |
| Ward et al.<br>2007 <sup>78</sup> | Evaluate WoundStat (WS) (a<br>granular blend of smectite<br>mineral and a super absorbent<br>polymer) compared to Army<br>gauze field bandage (AFB),<br>QuikClot granules (QCG),<br>QuikClot Advanced Clotting<br>Sponge (ACS), HemCon<br>chitosan Dressing (HC), N=5<br>per group. Spleen was<br>removed. Femoral artery injury.<br>Free bleeding for 45 seconds<br>then dressings were applied.<br>200 mm Hg pressure applied<br>for 3 minutes. Application was<br>repeated if rebleeding occurred.<br>500 mL Hextend. Observed for<br>180 minutes. N=5 for all<br>groups. | WS achieved<br>complete hemostasis<br>in all animals with no<br>second application. All<br>other dressings<br>needed a second<br>application.                                   | All WS animals<br>survived, 100%;<br>AFB, 0%; QCG,<br>0%; ACS, 0%; HC,<br>20%, WS was<br>significantly<br>different from all<br>other dressings. | Temperatures were<br>significantly higher<br>for the QCG and<br>ACS groups<br>immediately after<br>application. | WS had<br>significantly less<br>blood loss than<br>the other<br>dressings. | "WS was superior to<br>the other hemostatic<br>agents tested in this<br>study of lethal arterial<br>vascular injury.<br>Additional study is<br>warranted on this<br>agent to determine its<br>potential for use in<br>combat and civilian<br>trauma." |

 Table C.2.
 Studies using 30 or 45 seconds of free bleeding (continued)

| Reference                            | Methods                                                                                                                                                                                                                                                                                                                                                                           | % Hemostasis                                                                                                 | Survival                                                                                                      | Adverse Events                                                                                                                                                                                                                                                          | Other Outcomes                                                                                                                          | Author's<br>Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acheson et al.<br>2005 <sup>79</sup> | Compare QuikClot powder<br>(QC), chitosan dressing<br>Hemcon (CD), and fibrin<br>sealant dressing (FSD) with<br>standard gauze control Army<br>Field Bandage (AFB). Spleen<br>was removed. Femoral artery<br>injury. Free bleeding for 45<br>seconds then dressings<br>applied. Manual pressure for 3<br>minutes. 500 mL Hextend.<br>Observed for 180 minutes.<br>N=15 per group. | Hemostasis: AFB, 0%;<br>QC, 0%; CD, 7%;<br>FSD, 67%; FSD<br>significantly different<br>from other dressings. | Survival: AFB, 0%;<br>QC, 0%; CD, 0%;<br>FSD, 67%; FSD<br>significantly<br>different from other<br>dressings. | QC produced<br>markedly higher<br>maximum<br>temperatures with<br>an average of<br>70.8 °C;<br>temperature for<br>other dressings<br>was 37 °C; the<br>difference was<br>statistically<br>significant. Tissue<br>damage was seen<br>primarily in QC<br>treated animals. |                                                                                                                                         | "FSD was superior to<br>other currently utilized<br>hemostatic products in<br>controlling lethal<br>arterial hemorrhage in<br>this model of a fatal<br>extremity wound. CD<br>showed some<br>hemostatic benefit.<br>The exothermic<br>reaction of QC was<br>significant and<br>resulted in gross and<br>histologic tissue<br>changes of unknown<br>clinical significance.<br>Controlled human<br>studies with the<br>promising products are<br>required." |
| Connolly<br>2004 <sup>395</sup>      | Compare the hemostatic<br>capabilities of the Rapid<br>Deployment Hemostat (RDH)<br>Bandage (n=6) with a gauze<br>pad (n=5). Femoral artery<br>injury. Tibia was fractured. Free<br>bleeding for 30 seconds.<br>Dressings applied followed by 5<br>minutes manual pressure.                                                                                                       |                                                                                                              |                                                                                                               |                                                                                                                                                                                                                                                                         | Blood loss after<br>30 minutes, mean<br>(SD): RDH, 14%<br>(9); gauze pad,<br>35% (14);<br>difference was<br>significantly<br>different. | "The RDH Bandage<br>was demonstrated to<br>be an effective<br>hemostatic agent<br>capable of rapidly<br>stopping arterial<br>hemorrhage with the<br>potential to decrease<br>trauma bleeding<br>mortality."                                                                                                                                                                                                                                               |

 Table C.2.
 Studies using 30 or 45 seconds of free bleeding (continued)

### Animal studies using 1 or 2 minutes of free bleeding

QuikClot granules/powder/sponge were examined in three studies and showed good hemostatic and survival properties.<sup>396-398</sup>

- Arnaud et al.<sup>396</sup> compared QuikClot ACS, Celox, WoundStat, HemCon, and several other hemostatic dressings with standard gauze. All dressings were significantly better than standard gauze for survival (37% for gauze, 60% for HemCon, 70% for ACS, 90% for Celox and WoundStat). QuikClot ACS was noted to have caused some mild burn injuries.
- Arnaud et al.<sup>397</sup> also noted that QuikClot ACS was an effective hemostatic agent and that a different formulation of the sponge could reduce the amount of heat generated.
- Nowshad et al.<sup>398</sup> used a brachial artery injury in a goat model to compare QuikClot and Chitohem powders and reported that QuikClot was the better agent.

QuikClot Combat Gauze was examined in three studies and showed good results for hemostasis and survival.<sup>85-87</sup> Two of these studies, examining differing outcomes, reported that QuikClot Combat Gauze was significantly better than standard gauze:

- Gegel et al.<sup>85</sup> reported that QuikClot Combat Gauze was significantly better than standard gauze at controlling blood loss and preventing further bleeding when the limb was vigorously moved.
- Causey et al.<sup>86</sup> reported that hemostasis using QuikClot Combat Gauze was significantly better than standard gauze when used in conditions of severe acidosis and coagulopathy.

In the third study, Arnaud et al.<sup>87</sup> compared QuikClot Combat Gauze with TraumaStat and reported that both dressings were effective hemostatic agents and protected most animals from dying (QuikClot Combat Gauze, 88% survival; TraumaStat, 50% survival).

TraumaDex (microporous polysaccharide hemospheres) was examined in two studies and showed good results for hemostasis and survival.<sup>399,400</sup> One of the studies looked at rebleeding and found not only TraumaDex but also other hemostatic dressings were better than standard gauze for preventing rebleeding:

- Burgert et al.<sup>399</sup> tested TraumaDex, BleedArrest, Celox, and standard gauze in a model intended to determine the arterial blood pressure at which rebleeding would occur. All of the hemostatic dressings were effective at hemostasis (BleedArrest and TraumaDex 100%, Celox 80%) but standard gauze failed to achieve hemostasis. All of the hemostatic dressings were effective at preventing rebleeding while blood pressure was raised pharmacologically.
- The second study, Gegle et al.,<sup>400</sup> compared blood loss among TraumaDex, Celox, BleedArrest, and standard gauze. All of the hemostatic dressings were significantly better at preventing blood loss than standard gauze but no differences were found among the hemostatic dressings.

| Reference                           | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Hemostasis                                                                                                                                                                                                                             | Survival | Adverse Events                                                                         | Other Outcomes                                                                                                                                                                                                                | Author's Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gegel et al.<br>2012 <sup>85</sup>  | The purpose of this study<br>was to examine the<br>effectiveness of QuikClot<br>Combat Gauze (QCG)<br>compared to a control group<br>and the effect of movement<br>on hemorrhage control<br>when QCG is employed.<br>Femoral artery and vein<br>injury. Free bleeding for 1<br>minute then dressings<br>applied. Firm manual<br>pressure of 25 lb per square<br>inch was applied for 5<br>minutes. 10-pound sandbag<br>was applied to the wound<br>for an additional 30 minutes.<br>N=11 per group. | Hemostasis was<br>defined as a clot<br>formation with<br>oozing of no more<br>than 2% of the<br>swine's total blood<br>volume over a 5-<br>minute period.<br>Data on number of<br>animals to achieve<br>hemostasis were<br>not reported. |          |                                                                                        | 5 minute<br>hemorrhage<br>amounts, mean<br>(SD): QC, 50±154<br>mL; control,<br>351±354 mL;<br>difference was<br>statistically<br>significant.<br>Movement caused<br>significantly more<br>rebleeding in the<br>control group. | "QCG is statistically and clinically<br>superior at controlling hemorrhage<br>compared to the standard pressure<br>dressing control group. Furthermore,<br>it produces a more robust clot that<br>can withstand significant movement.<br>These movements were severe and<br>should be avoided in patients with an<br>inguinal injury. However, the<br>investigators wanted reproducible<br>movements that would test the<br>robustness of a newly formed clot.<br>Based on this study and the<br>requirements outlined by Pusateri,<br>QCG is an effective hemostatic agent<br>for use in civilian and military trauma<br>management." |
| Gegel et al.<br>2012 <sup>401</sup> | BleedArrest (Hemostasis<br>LLC, Saint Paul, MN)<br>compared to standard<br>compression. Uncontrolled<br>hemorrhage model. N=10<br>per group. Femoral artery<br>and vein were injured.<br>Bleeding for 1 minute.<br>Manual 25 psi pressure<br>applied for 5 minutes after<br>application of dressings<br>followed by pressure<br>dressing of rolled gauze and<br>10 pound sandbag, left in<br>place for 30 minutes.                                                                                  |                                                                                                                                                                                                                                          |          | No exothermic<br>heat product with<br>BleedArrest and<br>no signs of<br>tissue damage. | Blood loss mean<br>(SD): BloodArrest,<br>72 mL (72);<br>control, 317 mL<br>(112); the<br>difference was<br>statistically<br>significant.                                                                                      | "BleedArrest is statistically and<br>clinically superior at controlling<br>hemorrhage compared to the<br>standard pressure dressing control<br>group. In conclusion, BleedArrest is<br>an effective hemostatic agent for use<br>in civilian and military trauma<br>management."                                                                                                                                                                                                                                                                                                                                                        |

Table C.3. Studies using 1 or 2 minutes of free bleeding

| Reference                           | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % Hemostasis                                                                                                                                                                                                                         | Survival | Adverse Events | Other Outcomes | Author's Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Causey et al.<br>2012 <sup>86</sup> | Test QuikClot Combat<br>Gauze (CG) and standard<br>gauze (SG) under<br>conditions of severe<br>acidosis and coagulopathy.<br>Used an ischemia-<br>reperfusion swine model to<br>produce a clinically<br>significant metabolic (lactic)<br>acidosis and dilutional<br>coagulopathy. Femoral<br>artery was injured and<br>allowed to bleed freely for 2<br>minutes. Dressings were<br>applied, followed by 2<br>minutes of compression,<br>followed by a 5 minutes<br>period to watch for<br>rebleeding. If rebleeding<br>occurred, the old dressing<br>was removed and new<br>dressings were reapplied.<br>The study end point was<br>hemostasis or 2 failed<br>attempts. | Hemostasis<br>success rate: CG,<br>n=9, 89% after first<br>application and<br>100% after second;<br>SG, n=8, 0% after<br>first application and<br>3% after second<br>application;<br>difference was<br>statistically<br>significant. |          |                |                | "Combat Gauze significantly<br>outperforms standard gauze<br>dressings in a model of major<br>vascular hemorrhage in acidotic and<br>coagulopathic conditions. This effect<br>appears to result from a decreased<br>time lag between activation and first<br>detectable clotting. Combat Gauze<br>appears to maintain its efficacy even<br>in the setting of severe acidosis and<br>coagulopathy for the control of<br>hemorrhage from vascular injury." |

| Reference                             | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Hemostasis                                                                                   | Survival | Adverse Events | Other Outcomes                                                                                                                                                 | Author's Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burgert et al.<br>2012 <sup>399</sup> | Determine and compare the<br>arterial blood pressures at<br>which rebleeding occurred<br>when the hemostatic agents<br>(BleedArrest, Celox, and<br>TraumaDex) were used to<br>control hemorrhage<br>compared with rebleeding<br>with standard pressure<br>dressing. Femoral artery<br>and vein injury. Free<br>bleeding for 1 minute.<br>Manual pressure (25 psi)<br>was applied for 5 minutes. A<br>standard pressure dressing<br>was then applied and<br>maintained for 30 minutes<br>under a 10 lb sandbag. After<br>hemostasis was achieved,<br>phenylephrine was used for<br>arterial pressure<br>manipulation. N=5 per<br>group. | Hemostasis:<br>BleedArrest, 100%;<br>TraumaDex, 100%;<br>Celox, 80%;<br>standard gauze,<br>0%. | _        |                | All of the<br>hemostatic<br>dressings were<br>significantly better<br>than standard<br>gauze at<br>preventing<br>rebleeding at<br>increased blood<br>pressure. | "The results of the current study<br>suggest that when BleedArrest,<br>Celox, and TraumaDex are used, the<br>clots are stronger compared to clots<br>formed in the control group and may<br>provide an extra margin of safety in<br>the presence of elevated blood<br>pressures. This study only<br>investigated the effects of arterial<br>blood pressure on rebleeding when<br>hemostatic agents were used. Future<br>studies should investigate the effects<br>of hemodilution on rebleeding." |

| Reference                           | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Hemostasis                                                                                                                                                                                                                                                                                                                                                                                                                                                | Survival                                                                                                                                                                                | Adverse Events | Other Outcomes                                                                                                                                                                                                                                                                    | Author's Conclusions                                                                                                                                                                                                         |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arnaud et al.<br>2011 <sup>87</sup> | Compare QuikClot Combat<br>Gauze (CBG) to TraumaStat<br>(TMS). Tested with both full<br>femoral transection<br>(including artery and vein)<br>and a femoral artery<br>puncture injury models. Full<br>femoral transection: n=6 for<br>each dressing, 2 minute free<br>bleeding. Artery puncture:<br>n=8 for each dressing, 45<br>second free bleeding.<br>Followed by dressing<br>application and 5 minutes of<br>manual compression.<br>Dressings stayed in place<br>for 180 minutes. | Rebleeding was<br>defined as blood<br>oozing from the<br>dressings (post-<br>treatment blood<br>loss) and requiring<br>aspiration as<br>opposed to no<br>bleeding or<br>bleeding controlled<br>by the dressing<br>(blood retained in<br>the dressing and<br>no need for<br>aspiration). After<br>compression:<br>transection model<br>CBG, 0%; TMS,<br>17%; puncture<br>model CBG, 63%;<br>TMS, 75%;<br>difference was not<br>statistically<br>significant. | Transection:<br>all animals<br>survived for<br>180 minutes.<br>Puncture:<br>CBG. 7 of 8<br>survived; TMS,<br>4 of 8<br>survived;<br>difference was<br>not statistically<br>significant. |                | Blood loss was<br>significantly<br>greater in the<br>transection model.<br>Both dressings<br>were easy to use<br>and remove from<br>the wound.                                                                                                                                    | "These findings indicated that CBG<br>and TMS were similarly effective in<br>improving hemostasis. These two<br>fabric-like dressings showed easy<br>application and removal, leaving a<br>clean wound for surgical repair." |
| Gegel et al.<br>2010 <sup>400</sup> | Examine the effectiveness<br>of BleedArrest, TraumaDex,<br>Celox, and control. N=5 for<br>each group. Femoral artery<br>and vein injury. Free<br>bleeding for 1 minute then<br>dressing applied. Manual<br>pressure of 25 lb per square<br>inch applied for 5 minutes.<br>Followed by pressure wrap<br>for 30 minutes. 500 mL of<br>Hextend. Pressure wrap<br>removed. No further<br>observation period.                                                                               | Hemostasis was<br>defined as clot<br>formation with<br>oozing of no more<br>than 2% of the<br>swine's total blood<br>volume over a 5-<br>minute period. No<br>data were reported<br>on rates of<br>hemostasis.                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                | Blood loss for 5<br>minutes, mean<br>(SD): BleedArrest,<br>21.0 (36.6) mL;<br>TraumaDex, 68.0<br>(103.5) mL;<br>Celox, 18.2 (41.6)<br>mL; control, 230<br>(154) mL; all<br>hemostatic<br>dressings were<br>significantly<br>different from<br>control but not<br>from each other. | "BleedArrest, Celox, and TraumaDex<br>were statistically and clinically<br>superior at controlling hemorrhage<br>compared with the standard pressure<br>dressing in the control group."                                      |

| Reference                             | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % Hemostasis                                                                                                                                       | Survival                                                                                                                                                                                                                                                                                     | Adverse Events                                                                                                                                                                                                                                                    | Other Outcomes                                                                                                                                                                                                                                                     | Author's Conclusions                                                                                                                                                                                        |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burgert et al.<br>2010 <sup>402</sup> | Determine the arterial blood<br>pressures at which<br>rebleeding occurs when<br>Celox and TraumaDEX are<br>used to control hemorrhage<br>compared with a standard<br>pressure dressing. N=5 per<br>group. Femoral artery and<br>vein injury. Free bleeding for<br>1 minute, application of<br>hemostatic dressing, 5<br>minutes 25 psi manual<br>pressure, then standard<br>pressure dressing for 30<br>minutes. Blood pressure<br>was raised using<br>phenylephrine infusion.                                                            | Hemostasis was<br>defined as clot<br>formation with<br>blood loss of no<br>more than 2% of<br>the swine's total<br>blood volume over<br>5 minutes. |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | Rebleeding<br>systolic blood<br>pressure mm Hg,<br>mean (SD):<br>Celox, 166.40<br>(40.92);<br>TraumaDEX<br>group, 152.20<br>(59.05); control,<br>88.25 (2.80);<br>Celox and<br>TraumaDEX were<br>significantly<br>different from<br>control but not<br>each other. | "Celox and TraumaDEX effectively<br>prevent rebleeding compared with<br>standard dressing."                                                                                                                 |
| Arnaud et al.<br>2009 <sup>396</sup>  | Evaluate 10 different<br>hemostatic dressings:<br>Advanced Clotting Sponge<br>ACS+, Celox (CEL),<br>Instaclot (IC), WoundStat<br>(WS), Alpha bandage (AB),<br>BloodStop (BLS), X-sponge<br>(XS), Chitoflex (CHI),<br>HemCon (HC), Polymem<br>FP-21 (FP-21). Femoral<br>artery and vein injury. N=8<br>per group. Free bleeding for<br>2 minutes, then dressings<br>applied with standard gauze<br>dressing placed over the<br>dressings, pressure applied<br>for 5 minutes, 500 mL<br>Hextend at 15 minutes,<br>observed for 180 minutes. | Rebleeding: XS,<br>WS, CEL, and IC,<br>were significantly<br>better with less<br>than a 40% rate.                                                  | Survival rate<br>(extrapolated<br>from figure):<br>ACS+, 70%;<br>CEL, 90%;<br>IC, 60%;<br>WS, 90%;<br>AB, 50%;<br>BLS, 50%;<br>XS, 90%;<br>CHI, 50%;<br>HC, 60%;<br>FP-21, 50%;<br>standard<br>gauze, 37%;<br>all dressings<br>were<br>significantly<br>different from<br>standard<br>gauze. | ACS+ caused a<br>rise of 7.2 °C<br>and 8.7 °C<br>between 2 and 4<br>minutes after<br>application.<br>ACS+ animals<br>had more<br>edema-like<br>changes with the<br>greatest depth in<br>the muscle layer<br>that could be<br>attributed to a<br>mild burn injury. | Blood loss was<br>lowest in IC, CEL,<br>XS, and WS and<br>were significantly<br>different from HC,<br>BS, FP-21, and<br>CHI.                                                                                                                                       | "Celox, QuikClot ACS, WoundStat,<br>and X-Sponge ranked superior in<br>terms of low incidence of rebleeding,<br>volume of blood loss, maintenance of<br>mean arterial pressure >40 mm Hg,<br>and survival." |

| Reference                             | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % Hemostasis                                                                                                                                                     | Survival                                                                                                                                                                                                                                                                                                                                                                             | Adverse Events | Other Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Author's Conclusions                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arnaud et al.<br>2008 <sup>397</sup>  | Compare the temperature<br>change and the hemostatic<br>efficacy of Advanced<br>Clotting Sponge ACS+ to<br>ACS in the groin<br>hemorrhage model;<br>compared to standard<br>gauze. Femoral artery and<br>vein injury. Free bleeding for<br>2 minutes (40% estimated<br>blood volume). Dressings<br>were applied, then manual<br>pressure for 5 minutes.<br>Observation for 180 minutes<br>while wound remained<br>covered. 500 mL Hextend at<br>15 minutes. 2 studies were<br>conducted, 1 with blood in<br>the wound and 1 with blood<br>removed from the wound. | Rebleeding<br>occurred in 50% of<br>both ACS groups in<br>no-blood-present<br>study.                                                                             | Survival rate<br>(no blood<br>present):<br>ACS+, 63.6%<br>(7 of 11); and<br>ACS, 100% (4<br>of 4); both<br>higher than<br>standard<br>dressing<br>(12.5%, 1 of<br>8). ACS<br>groups were<br>not<br>significantly<br>different but<br>both were<br>significantly<br>different from<br>gauze.<br>Survival rate<br>(blood<br>present): ACS,<br>67% (4 of 6);<br>gauze, 25% (1<br>of 4). |                | Wound<br>temperature with<br>no blood present<br>before dressing<br>application:<br>significantly lower<br>with ACS+<br>treatment<br>compared with<br>ACS treatment<br>(40.3±1.8 °C vs.<br>61.4±10.7 °C;<br>significantly<br>different).<br>Temperature was<br>higher by 3.2±1.6<br>°C in ACS+ group<br>than rectal<br>temperature<br>(significantly<br>different). With<br>blood present,<br>ACS temperature<br>was significantly<br>lower than with no<br>blood present. | "The lower heat release with ACS+<br>compared to ACS was confirmed in<br>an animal model and ACS+ had<br>similar efficacy in arresting bleeding<br>when compared to Standard<br>Dressing."                                                                                                                                  |
| Nowshad et al.<br>2011 <sup>398</sup> | Compare the effectiveness<br>of QuikClot powder and<br>Chitohem powder for control<br>of bleeding. Brachial artery<br>injury in a goat model. Free<br>bleeding for 60 seconds<br>then dressing applied.<br>Animals were stabilized with<br>intravenous fluid. Incisions<br>were closed using silk<br>sutures. Observation for 120<br>minutes. Animals were<br>allowed to recover.                                                                                                                                                                                 | Hemostasis<br>achieved:<br>Chitohem 15 of 20<br>stopped bleeding,<br>results not<br>presented for<br>QuikClot but were<br>significantly better<br>than Chitohem. |                                                                                                                                                                                                                                                                                                                                                                                      |                | Blood loss:<br>QuikClot<br>51.1±4.48 cc,<br>Chitohem<br>63.3±12.04 cc;<br>differences was<br>significantly<br>different.                                                                                                                                                                                                                                                                                                                                                   | "In this study, it seems that activity of<br>'Quikclot' in cessation of bleeding of<br>large arterial vessels was slightly<br>better than 'Chitohem.' Due to<br>limitations which we had in this study,<br>further studies are necessary to show<br>the actual differences between these<br>agents and their side effects." |

Table C.3. Studies using 1 or 2 minutes of free bleeding (continued)

#### Animal studies using 3 or more minutes of free bleeding

QuikClot was compared to various hemostatic agents and standard gauze in all five studies using 3 or more minutes of free bleeding.<sup>69,70,88-90</sup> In these studies of severe bleeding, QuikClot was effective at promoting hemostasis and survival.

Kozen et al.<sup>88</sup> compared QuikClot granules to Celox, HemCon, and standard gauze to determine the extent of rebleeding after animals are resuscitated after severe blood loss (66% of blood volume). Each of the hemostatic dressings was effective at preventing rebleeding compared with rebleeding with standard gauze. Survival was only 50% for the standard gauze group compared with 100% for Celox, 92% for QuikClot, and 67% for HemCon. A significant increase in wound temperature was noted in QuikClot animals.

Arnaud et al.<sup>89</sup> compared QuikClot granules and ACS (bagged QuikClot) with standard gauze and no treatment. All animals that received no treatment died, compared with a survival rate of 12.5% for gauze and 75% for both forms of QuikClot. Both forms of QuikClot significantly raised wound temperature.

Ahuja et al.<sup>90</sup> reported on survival in animals treated with various reformulations of QuikClot compared with QuikClot granules in a bag, HemCon, standard gauze, and no treatment. All animals that received no treatment died, compared with a survival rate of 50% for gauze, 75% for HemCon, and 90% for QuikClot granules in a bag. Only QuikClot granules in a bag was significantly different from gauze. Tissue damage was also reduced with bagged QuikClot granules.

Alam et al.<sup>69</sup> compared QuikClot granules with HemCon, TraumaDex, other hemostatic agents, standard gauze, and no treatment. All nontreated animals died as well as 57% of gauze-treated animals. No QuikClot-treated animals died compared with a survival rate of 74% for HemCon-treated animals and 67% for TraumaDex-treated animals.

Alam et al.<sup>70</sup> compared QuikClot granules with Rapid Deployment Hemostat (poly-N-acetylglucosamine derived from algae), TraumaDex, standard gauze, and no treatment. QuikClot treated animals had the lowest blood loss and no deaths. No treatment resulted in 17% survival, Rapid Deployment Hemostat in 33% survival, and standard gauze and TraumaDex both resulted in 67% survival.

| Reference                           | Methods                                                                                                                                                                                                                                                                                                                                                                                                                        | % Hemostasis                                                                                                                                                                                                                                                            | Survival                                                                                                                                                                                             | Adverse Events                                                                                                                                                                 | Other<br>Outcomes                                                                                                                                                                                                                        | Author's Conclusions                                                                                                                                                                                                                                                                         |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filips et al.<br>2013 <sup>35</sup> | Compare the iTClamp to<br>standard gauze. N=5 per<br>group. Four study groups<br>according to bleeding time:<br>control (no treatment), Early<br>iTClamp (clamp applied<br>after 10 seconds of free<br>bleeding), Late iTClamp<br>(applied after 3 minutes of<br>free bleeding), and standard<br>gauze (applied after 3<br>minutes of free bleeding).<br>Observed for 180 minutes.                                             |                                                                                                                                                                                                                                                                         | Survival: Control<br>0%, standard<br>gauze 60%, Early<br>iTClamp 100%,<br>Late iTClamp<br>100%.                                                                                                      | No adverse<br>events reported                                                                                                                                                  | The mean<br>external blood<br>loss was<br>significantly<br>lower in the<br>iTClamp groups<br>compared to<br>control animals.<br>Early iTClamp<br>but not Late<br>iTClamp had<br>significantly less<br>blood loss than<br>standard gauze. | "The iTClamp showed statistically<br>significant improvement in survival,<br>survival time, and estimated blood<br>loss when compared to no<br>treatment. This proof-of-concept<br>study demonstrates the potential of<br>the iTClamp to control severe<br>bleeding and prevent blood loss." |
| Kozen et al.<br>2008 <sup>88</sup>  | Compare the Celox (CX),<br>HemCon (HC), and QuikClot<br>granules (QC) dressings to<br>standard gauze dressing<br>(SD). N=12 per group.<br>Femoral artery and vein<br>injury. Free bleeding for 3<br>minutes then dressing<br>applied. Manual pressure for<br>5 minutes followed by a<br>compression dressing. 500<br>mL Hextend. Observed for<br>180 minutes. Mean initial<br>blood loss was more than<br>66% of blood volume. | Initial hemostasis<br>was achieved in<br>all animals but<br>rebleeding<br>occurred in 10 of<br>12 in the SD<br>group with 6 of 12<br>achieving a<br>second<br>hemostasis.<br>Rebleeding: CX,<br>0%; HC, 33%;<br>QC, 8%; all were<br>significantly<br>different from SD. | Survival: CX,<br>100%; SD, 50%;<br>HC, 67%; QC,<br>92%; CX was<br>significantly<br>different from SD.<br>Some animals died<br>before dressing<br>application and<br>were excluded<br>from the study. | Mean maximum<br>temperature in<br>wounds treated<br>with QC was<br>61.0 °C and<br>statistically<br>different from<br>37.6 °C in CX,<br>38.2 °C in HC,<br>and 38.8 °C in<br>SD. | Blood loss, mean<br>(SD): SD,<br>54.0±7.2 mL/kg;<br>CX, 46.4±5.2;<br>HC, 50.1±11.0;<br>QC, 46.5±4.9                                                                                                                                      | "In this porcine model of<br>uncontrolled hemorrhage, CX<br>improved hemorrhage control and<br>survival. CELOX is a viable<br>alternative for the treatment of<br>severe hemorrhage."                                                                                                        |

Table C.4. Studies using 3 minutes or more of free bleeding

| Reference                           | Methods                                                                                                                                                                                                                                                                                                                                                                   | % Hemostasis | Survival                                                                                                                                                                                                                                                                      | Adverse Events                                                                                                                                                                                 | Other<br>Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                         | Author's Conclusions                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arnaud et al.<br>2007 <sup>89</sup> | Compare the modified<br>"bagged" QuikClot (ACS)<br>with the original granular<br>QC, standard gauze (SD)<br>and no treatment (NONE).<br>Femoral artery and vein<br>injury. Free bleeding for 3<br>minutes then dressings<br>were applied. Manual<br>pressure for 5 minutes. 500<br>mL Hextend. Observed for<br>240 minutes. N=8 per<br>group.                             |              | Survival: NONE,<br>0%; SD, 12.5%;<br>QC, 75%; ACS,<br>75%.                                                                                                                                                                                                                    | Wound<br>temperature,<br>mean (SD):<br>maximum of<br>58.1(4.5) °C for<br>QC and 58.2<br>(5.3) °C for ACS;<br>significantly<br>higher than SD,<br>37.8 (0.4) °C; and<br>NONE, 37.5<br>(0.7) °C. | Blood loss: ACS-<br>treated animals<br>(10.3%<br>estimated blood<br>volume [EBV])<br>and SD-treated<br>animals (22.3%<br>EBV),<br>significantly<br>lower than the<br>blood loss in<br>NONE-treated<br>animals (31.5%<br>EBV).                                                                                                                                                                                                             | "ACS was as efficacious as original<br>granular QC in inducing<br>hemostasis and improving survival<br>as compared with the efficacy of<br>SD. Easier and more rapid<br>application and complete removal<br>of ACS may offer a distinct<br>advantage in battlefield<br>resuscitation efforts to enhance a<br>clean wound site and eventual<br>surgical repair." |
| Ahuja et al.<br>2006 <sup>90</sup>  | Compare new varieties of<br>ion exchange zeolites, and<br>the new generation of<br>chitosan dressing<br>(HemCon), with standard<br>gauze and QuikClot<br>granules in a bag. Femoral<br>artery and vein injury. Free<br>bleeding for 3 minutes<br>followed by dressing<br>application and 5 minutes of<br>manual pressure. 500 mL<br>Hextend. Observed for 180<br>minutes. |              | All animals in the<br>control (no<br>dressing) group<br>died, n=9.<br>Standard dressing<br>group had 50%<br>mortality, n=10.<br>QuikClot granules,<br>10% mortality,<br>n=10; HemCon,<br>25%, n=8; only<br>QuikClot was<br>significantly<br>different from<br>standard gauze. |                                                                                                                                                                                                | Bagged-QuikClot<br>was considered<br>easier to apply<br>and remove. The<br>bags conformed<br>to the contours<br>of the wound on<br>packing.<br>Removal was<br>extremely easy<br>and quick. This<br>version was<br>superior to the<br>original used in a<br>previous study.<br>The zeolite<br>formulas<br>including bagged<br>QuikClot all<br>produced heat<br>but necrosis was<br>absent in all of<br>the artery<br>sections<br>examined. | "The use of zeolite hemostat can<br>control hemorrhage and<br>dramatically reduce mortality from<br>a lethal groin wound. Modifications<br>of zeolite hemostat can decrease<br>the exothermic reaction and<br>attenuate tissue damage."                                                                                                                         |

Table C.4. Studies using 3 minutes or more of free bleeding (continued)

| Reference                         | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Hemostasis                                                                                                                     | Survival                                                                                                                                                                                                                     | Adverse Events                                                                                           | Other<br>Outcomes                                                                                       | Author's Conclusions                                                                                                                                                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alam et al.<br>2004 <sup>69</sup> | Compare no dressing (ND)<br>n=8, standard gauze (SD)<br>n=7, QuikClot granules n=7<br>(1% residual moisture [RM]<br>zeolite hemostat 3.5 oz),<br>HemCon (HC) n=7, Quick<br>Relief n=8, Fast Act (FA)<br>n=6, TraumaDex (TDex)<br>n=7. QuikClot in a bag was<br>tested in 5 animals. Femoral<br>artery and vein injury. Free<br>bleeding for 3 minutes.<br>Treatment dressings were<br>applied followed by manual<br>compression for 5 minutes.<br>500 mL Hextend. Observed<br>for 180 minutes.                                                 | QuikClot stopped<br>bleeding in all<br>animals. HC<br>stopped bleeding<br>in 5 animals but<br>failed completely<br>in 2 animals. | Mortality: All ND<br>animals died. SD,<br>57%; QuikClot, 0%;<br>HC, 28.6%; FA,<br>83.3%; TDex,<br>42.9%; Quick<br>Relief, 75%; only<br>QuikClot was<br>significantly<br>different from ND<br>and SD. QuikClot<br>in bag 40%. | QuikClot and<br>Quick Relief<br>showed<br>temperature<br>increases in the<br>wound and tissue<br>damage. | QuikClot had the<br>lowest volume of<br>blood loss.                                                     | "The use of zeolite hemostatic<br>agent (1% residual moisture, 3.5<br>oz) can control hemorrhage and<br>dramatically reduce mortality from<br>a lethal groin wound." |
| Alam et al.<br>2003 <sup>70</sup> | Define a clinically relevant<br>animal model of lethal<br>hemorrhage from a complex<br>groin wound and compare<br>the efficacy of different<br>hemostatic agents to<br>standard dressing (SD) and<br>no dressing (ND) for control<br>of bleeding and<br>improvement of early<br>survival. Rapid Deployment<br>Hemostat (RDH) bandage,<br>QuikClot hemostatic agent<br>(QC), and TraumaDEX<br>(TDEX). Femoral artery and<br>vein injury. Free bleeding for<br>5 minutes. 1,000 mL normal<br>saline. Observed for 180<br>minutes. N=6 per group. |                                                                                                                                  | Mortality: ND, 83%;<br>SD, 33.4%;<br>QuikClot, 0%;<br>RDH, 66.6%;<br>TDEX, 33.4%;<br>QuikClot was<br>significantly<br>different from ND.                                                                                     |                                                                                                          | QC had the<br>lowest blood loss<br>but it was not<br>statistically<br>different from the<br>ND control. | "Of the hemostatic agents tested,<br>QuikClot improved survival and<br>decreased bleeding in a swine<br>model of lethal vascular and soft<br>tissue injury."         |

Table C.4. Studies using 3 minutes or more of free bleeding (continued)

## **Volunteer Studies**

| Table C.5. | Studies testing tourniquets with volunteers |
|------------|---------------------------------------------|
|------------|---------------------------------------------|

| Reference                          | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Author's Conclusions                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wall et al. 2013 <sup>91</sup>     | Combat Application Tourniquet (CAT) and<br>Stretch, Wrap, and Tuck Tourniquet (SWAT-T)<br>Collect occlusion and completion pressures of<br>tourniquets with different widths and styles<br>designed for tactical environments. Test if<br>arterial occlusion pressures are lower with<br>wider designs and if tourniquet completion<br>pressures with the stretch and wrap design<br>(SWAT-T) and the windlass design (CAT) are<br>higher than the pressure required for arterial<br>occlusion. Occlusion pressures were recorded<br>with distal arterial Doppler pulse signal.<br>Tourniquet appliers trained with the adult<br>blood pressure cuffs with a certified<br>Emergency Medical Technician. Volunteers<br>trained with the SWAT-T and CAT with the<br>manufacturer's printed instructions,<br>PowerPoint slides from the manufacturer's<br>Web site (CAT), and training videos posted on<br>the internet (SWAT-T and CAT). 6 male and<br>11 female volunteers. Median age 22 years.<br>64 applications per tourniquet: 16 each at self-<br>Thigh, Nonself-Thigh, Self-Arm, and Nonself-<br>Arm. | Ease of Use: Mostly rated as Easy. CAT<br>applications exhibited significantly greater<br>discomfort than SWAT-T and only ones with severe<br>ratings. CAT: No discomfort 1, little 20, moderate<br>32, severe 11; SWAT-T No discomfort 12, little 24,<br>moderate 28, severe 0.<br>Occlusion: Reached occlusion- Self-thigh CAT 15 of<br>16, SWAT-T 15 of 16; Nonself-Thigh CAT 15 of 16,<br>SWAT-T 14 of 16; Self-Arm CAT 16 of 16, SWAT-T<br>16 of 16; Nonself-Arm CAT 15 of 16, SWAT-T<br>16 of 16; Nonself-Arm CAT 15 of 16, SWAT-T<br>applications lost occlusion. "Arterial occlusion<br>pressures were lower with the wider SWAT-T and<br>pneumatic blood pressure cuffs than with the CAT,<br>and completion pressures with the SWAT-T and<br>CAT were higher than arterial occlusion pressures."<br>Other: Completion pressures with the CAT and<br>SWAT-T were generally higher than occlusion<br>pressures (differences were significant). Two CAT<br>thigh applications were halted due to pain. | "Limb circumference/tourniquet width<br>occlusion pressure predictions are not<br>good substitutes for measurements. The<br>wider SWAT-T has lower occlusion and<br>completion pressures than the CAT.<br>Decreases in muscle tension lead to<br>decreases in tourniquet pressure,<br>especially with the nonelastic CAT,<br>which can lead to occlusion loss." |
| Lyon et al.<br>2012 <sup>403</sup> | Abdominal Aortic Tourniquet (AAT)<br>The AAT is a pneumatic belt designed for<br>constant delivery of pressure. Study was<br>designed to determine in human volunteers if<br>AAT results in cessation of common femoral<br>artery (CFA) blood flow. Prospective<br>observational study. Nine subjects, all male,<br>were enrolled. The AAT was applied by a<br>single provider. Blood flow was measured with<br>pulse wave Doppler. A 10 point pain scale was<br>used to measure patient discomfort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ease of Use: AAT was applied in less than 1<br>minute.<br>Occlusion: Flow stopped in 7 subjects at a median<br>pressure of 180 mm Hg (150-230 mm Hg). One<br>subject seemed to show no blood flow response<br>with increasing pressure.<br>Other: Median patient discomfort was 7, range 3-10.<br>Pain resolved after device was released                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "The AAT device was effective at<br>reducing flow in the CFA and ceased<br>flow in most of the subjects. Application<br>of the device was associated with<br>discomfort varying from moderate to<br>severe and resolving with device<br>removal."                                                                                                               |

| Reference                             | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Author's Conclusions                                                                                                                                                                                                |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wall et al. 2012 <sup>95</sup>        | Stretch, Wrap, and Tuck Tourniquet (SWAT-T)<br>The SWAT-T is wider than the Combat<br>Application Tourniquet. Determine if the<br>SWAT-T is easily to apply with little prior<br>training and can stop arterial blood flow<br>through each extremity location. 15 volunteer<br>tourniquet appliers and 15 volunteer<br>recipients. The applier group watched 19<br>seconds of a thigh application video 3 times.<br>Occlusion pressures were the manometer<br>pressures of the pneumatic blood pressure<br>cuffs (arm or thigh) when the distal arterial<br>Doppler pulse signal became inaudible (wrist<br>radial artery or ankle posterior tibial artery).<br>Tourniquets were tried high, mid, and just<br>above and below joint on both leg and arm.<br>Volunteers were healthy undergraduate men<br>and women in their 20s. | Ease of Use: 150 tourniquet applications were<br>evaluated. Minimal training- 101 applications were<br>rated Easy. Among 96 Doppler successes 85%<br>Easy, 13% Challenging, 2% Difficult; Among 54<br>Doppler failures 35% Easy, 46% Challenging, 19%<br>Difficult. Discomfort 53 None, 62 Little, 34<br>Moderate, 1 Severe. Doppler failure was<br>significantly associated with rating of "None."<br>Doppler success 24% None, Doppler failure 56%<br>None. Properly stretched tourniquets were<br>significantly associated with some discomfort (20%<br>None vs. 51% None). Application of tourniquet took<br>less than 40 seconds. Additional training provided<br>some improvements especially with increased<br>discomfort while still being easy to apply.<br>Occlusion: Doppler signal was lost within 16<br>seconds when applications was successful. Doppler<br>success was significantly more frequent on arms<br>than legs. Tourniquet placement high on<br>the thigh had the lowest Doppler success rate (3 of<br>15); when Doppler signal. | "Proper application of the SWAT-T is<br>easy and can stop extremity arterial flow<br>but requires some training for many<br>appliers."                                                                              |
| Childers et al.<br>2011 <sup>92</sup> | Combat Application Tourniquet (CAT)<br>Determine whether direct exposure to the<br>Afghanistan environment decreases efficacy<br>or increases breakdown of CATs and<br>determine the average number of turns of the<br>tourniquet windlass necessary to stop the<br>distal pulse. Exposed CATs were compared to<br>unexposed CATs on the thighs of volunteers<br>(active duty male military members). 166<br>human subjects and 332 tourniquets were<br>used in the study. A CAT was efficacious if it<br>terminated the distal pulse (dorsalis pedis<br>artery) for at least 30 seconds (measured<br>using a Doppler stethoscope) without causing<br>intolerable pain—regardless of tourniquet<br>breakage.                                                                                                                     | Ease of Use: Not part of study<br>Occlusion: Efficacy of exposed tourniquets was<br>lower than unexposed: 63% vs. 91%, statistically<br>significant difference. 8% of the exposed<br>tourniquets broke compared to none of the<br>unexposed.<br>Other: 59% of the CATs required three turns to be<br>effective, median number of turns was 2.0, same<br>whether exposed or unexposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Environmental exposure of military<br>tourniquets is associated with decreased<br>efficacy and increased breakage. In most<br>cases, tourniquets require three turns to<br>stop the distal lower extremity pulse." |

### Table C.5. Studies testing tourniquets with volunteers (continued)

| Reference                           | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Author's Conclusions                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Guo et al. 2011 <sup>96</sup>       | <ul> <li>5 types: bladder tourniquet, windlass<br/>tourniquet, cargo-strap tourniquet, rubber tube,<br/>and improvised tourniquet (canvas military<br/>belts).</li> <li>Evaluate currently available tourniquets in<br/>China for prehospital use. Enrolled 20 young<br/>soldiers (20-27 years old), 12 males, 8<br/>females. Participants were given training and<br/>repeatedly practiced self-placement of the<br/>tourniquets until they were successful.</li> <li>Vascular Doppler Ultrasound was used to<br/>monitor the blood flow in the brachial artery<br/>and popliteal artery. Absence of a blood flow<br/>signal was considered a successful<br/>application.</li> </ul>                                                                                  | Ease of Use: Application time for Cargo-strap<br>tourniquet was the shortest, 7.22±2.30 seconds in<br>the upper extremities and 6.48±2.40 seconds in the<br>lower extremities. The application time for bladder<br>tourniquet was the longest, and the time in the<br>upper extremities (25.78±7.87) was greater than in<br>lower extremities (19.59±7.52).<br>Occlusion: The bladder tourniquet and windlass<br>tourniquet had the best outcomes: bladder<br>tourniquet was 75% in upper extremities and 100%<br>in the lower extremities; windlass was 80% upper<br>and 100% lower; cargo strap was 70% upper and<br>85% lower; rubber tubing was 60% upper and<br>85% lower.<br>Other: Pain (zero to three scale, none to very<br>painful): rubber tube 2.40, improvised 1.90, cargo-<br>strap 1.50, windlass 1.25, bladder 0.95. The bladder | "The bladder tourniquet and the windlass<br>tourniquet are efficient tourniquets,<br>although the windlass is superior with<br>respect to portability and pain. The<br>Cargo-strap and rubber tourniquets have<br>several disadvantages that reduce their<br>suitability for field use. The improvised<br>tourniquet is not recommended because<br>of low efficiency and severe pain during<br>implementation." |
| Taylor et al.<br>2011 <sup>93</sup> | Combat Application Tourniquet (CAT) and<br>Emergency and Military Tourniquet (EMT)<br>Evaluate whether the currently issued<br>tourniquet (CAT) was physically able to<br>adequately occlude arterial flow when applied<br>at mid-thigh level, first when self-applied and<br>then when applied to the patient by a trained<br>caregiver. The pneumatic EMT tourniquet was<br>applied to the first thigh and inflated by the<br>lead researcher to a maximum pressure<br>possible (not self-applied). Participants were<br>currently serving military personnel. Blood flow<br>in the popliteal artery was detected by Doppler<br>ultrasound. Success was defined as the<br>complete eradication of detectable popliteal<br>blood flow. 24 participants were enrolled. | Ease of Use: not part of study.<br>Occlusion: The self-applied CAT occluded popliteal<br>flow in only 4 subjects (16.6%). The CAT applied by<br>a researcher occluded popliteal flow in 2 subjects<br>(8.3%). The EMT prevented popliteal flow in 18<br>subjects (75%). The differences were statistically<br>significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "This study demonstrates that the CAT<br>tourniquet is ineffective in controlling<br>arterial blood flow when applied at mid-<br>thigh level. The EMT was successful in a<br>significantly larger number of<br>participants."                                                                                                                                                                                   |

| Table C.J. Studies lesting tourniquels with volunteers (continued | Table C.5. | Studies testing tourniquets with volunteers (continued |
|-------------------------------------------------------------------|------------|--------------------------------------------------------|
|-------------------------------------------------------------------|------------|--------------------------------------------------------|

| Reference                         | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Author's Conclusions                                                                                                                                                                                           |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Swan et al.<br>2009 <sup>97</sup> | Three common non-commercial tourniquets:<br>the sphygmomanometer (Propper, Rankin<br>Biomedical, Holly, MI), the half inch rubber<br>tubing and the cloth with windlass.                                                                                                                                                                                                                                                                                                                                       | Ease of Use: Sphygmomanometer much easier to<br>use on arm than thigh. Rubber tubing easier to use<br>on arm than leg. Cloth and windlass easiest to use<br>on arm and leg.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "Our data indicate that all tourniquets<br>can be used successfully below the knew<br>or elbow. The cloth and windlass is the<br>easiest to apply. It is probably the most<br>readily available or simplest to |
|                                   | Objectives: Determine the simplest technique<br>for tourniquet control of extremity arterial<br>hemorrhage. Determine if a tourniquet, placed<br>on the forearm or the leg, arrests distal<br>hemorrhage. Determine if tourniquet-induced<br>pain is an important consideration in tourniquet<br>use. Enrolled 10 healthy volunteers, mean age<br>36.5 years. Doppler ultrasound was used to<br>determine stoppage of blood flow. Tourniquets<br>were applied sequentially to arm, forearm,<br>thigh, and leg. | Occlusion: Sphygmomanometer- 38 out of 40<br>successful except to two thighs that were too large<br>for the cuff. Pressure needed to stop flow was about<br>30 mm Hg higher for the thigh than arm, 163 mm<br>Hg vs. 133 mm Hg. Rubber tubing- was successful<br>on all applications except for pain in lower extremity<br>resulted in one failure. Cloth and windlass- one<br>failure due to severe pain in thigh. Tourniquets on<br>arm or thigh that readily eliminate arterial blood<br>flow, based on distal Doppler pulse cessation,<br>accomplish the same objective when placed below<br>the elbow or below the knee. | procure/improvise. Pain is irrelevant.<br>"Pressure Point Control" of extremity<br>arterial hemorrhage is a euphemistic<br>misnomer."                                                                          |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other: Sphygmomanometer moderate discomfort on leg. Rubber tubing some pain including one severe. Cloth and windlass one severe pain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                |

| Table C.5. Studies testing tourniquets with voluntee | rs (continued) |
|------------------------------------------------------|----------------|
|------------------------------------------------------|----------------|

| Reference                      | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Author's Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| King et al. 2006 <sup>94</sup> | Five tourniquet systems: Self Applied<br>Tourniquet System (SATS); One-Handed<br>Tourniquet (OHT); tie & cravat Improvised<br>Tourniquet (IT); pneumatic Emergency<br>Medical Tourniquet (EMT); and latex surgical<br>tubing (ST).<br>Evaluate currently available tourniquets for<br>future operational use by Canadian Forces.<br>Study focused on tourniquets that had not<br>been previously evaluated by medics in<br>simulated operational conditions and that were<br>readily available. 10 volunteer junior medics<br>from 1 Field Ambulance, part of 1 Canadian<br>Mechanized Brigade Group in Edmonton,<br>Alberta, Canada. Each given a 20 minute<br>briefing on use of tourniquets. Five groups of 2<br>each worked together, one applying the<br>tourniquet and the other acting as patient, then<br>switching places. Vascular Doppler was used<br>by a surgeon to judge stoppage of pulse. Each<br>team tested all 5 tourniquet systems. One<br>application series used thicker winter clothing.<br>Only the lower limb was tested. | <ul> <li>Ease of Use: ST mean application time was 24 seconds, others 30 seconds or more, difference was significant.</li> <li>Occlusion: ST was the most successful with 90% success, EMT 80%, and others less than 50%, OHT did not work on any attempt. Nearly same results with winter clothing.</li> <li>Other: EMT use had the lowest average pain scores (0.9 out of 5), averaging minor discomfort. ST average pain was 3.7. ST was considered most portable. Overall, volunteers clearly preferred the EMT followed by the ST by a significant margin. However, the medics believed that the EMT was too bulky and prone to durability issues to be given to soldiers.</li> </ul> | "The most effective tourniquets were the<br>EMT and ST. The ST is also the lightest,<br>fastest, easiest to learn, and the<br>cheapest but it causes a lot of pain and<br>presumably, local tissue damage. ST<br>can be issued to every soldier with a<br>minimum of training and used effectively<br>in the "Care Under Fire" phase. The<br>EMT, which causes the least pain and is<br>equally effective, can be applied during<br>the "Tactical Field Care" phase by the<br>medic to replace the surgical tubing. Fine<br>adjustments can be made to the EMT,<br>which allows the medic to safely deflate<br>the device, assess the wound, determine<br>if a tourniquet is required, and re-inflate<br>quickly if necessary." |

 Table C.5.
 Studies testing tourniquets with volunteers (continued)

| Reference                            | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Author's Conclusions                                                                                                                                                                                                                                                                                     |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Walters et al.<br>2005 <sup>28</sup> | Combat application tourniquet (CAT), Self-<br>Applied Tourniquet System (SATS),<br>Mechanical Advantage Tourniquet (MAT),<br>Special Operations Forces Tactical Tourniquet<br>(SOFTT), One-Handed Tourniquet (H-Dyne),<br>Last Resort Tourniquet (LRT), Emergency &<br>Military Tourniquet (EMT), London Bridge<br>Tourniquet (LBT), K2 Tactical Tourniquet (K2).<br>U.S. Army Institute of Surgical Research<br>evaluated commercially available tourniquets<br>for efficacy in stopping blood flow. Study<br>design was prospective with a randomized<br>crossover design. Experiments were<br>performed at the proximal femur and the<br>proximal humerus. 20 healthy men and<br>women ages 23 to 47 were enrolled, 18 leg<br>and 12 arm. Doppler ultrasound confirmed<br>blood flow stoppage. Volunteers applied own<br>tourniquets until Doppler confirmed stoppage<br>or pain prevented further tightening. U.S.<br>Armed Forces considered devices effective if<br>distal arterial flow in the thigh was occluded in<br>at least 80% of patients. | Ease of Use: Not reported.<br>Occlusion: CAT, EMT, and SOFTT were 100%<br>effective in stopping blood flow in the leg. MAT was<br>88% effective. The LRT, SATS, and H-Dyne did not<br>reach 80%. CAT, EMT, and SOFTT were 100%<br>effective in stopping blood flow in the arm. The MAT<br>was 75%.<br>Other: The 3 tourniquets that were not effective all<br>produced pain some of which stopped their use.<br>The MAT failed the arm test because of intolerable<br>pinching pain. | "Some commercially available<br>tourniquets do not reliably occlude<br>arterial blood flow and may not be<br>successful in preventing extremity<br>exsanguination in a trauma patient.<br>Potential purchasers of such devices<br>should bear this in mind when selecting<br>a device for clinical use." |

Table C.5. Studies testing tourniquets with volunteers (continued)
## Simulation Studies

| Reference                         | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Author's Conclusions                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Koller et al. 2013 <sup>404</sup> | Pelvic C-Clamp<br>Determine if a single training period could<br>adequately educate physicians to place the<br>Pelvic C-Clamp safely on a model in a<br>reasonable time and that this knowledge<br>would be retained at the follow-up evaluation<br>session. The study used a two-step training<br>program with an oral presentation including<br>detailed description of the Pelvic C-Clamp<br>and its indications and contra-indications, its<br>assembly and the different possible pin<br>placement sites. In the second phase each<br>participant assembled and placed the clamp<br>onto a prepared pelvic model. Time needed<br>and the accuracy of pin placement were<br>then evaluated. The participants' skills were<br>reevaluated 12 months later. 32 participants<br>with various experience in pelvic surgery. | Ease of Use: First evaluation- time needed<br>for assembly 60.66 ±21.25 (range 28–112)<br>seconds. The placement task was finished<br>within 148.34 ±41.31 (range 54–267)<br>seconds. Average total time was 214.47<br>±77.72 (range 71–531) seconds.<br>12 month evaluation- only 18 participated.<br>Time needed for assembly 77.39 ±35.37<br>(range 37–154) seconds. The placement<br>task was accomplished in an average of<br>223.89 ±81.86 (range 110–379) seconds.<br>Average total time of 301.28 ±101.20 (range<br>175–466) to assemble and place the clamp.<br>Significant average increase of 107.56<br>seconds (55.52 %) to complete the<br>positioning task.<br>Occlusion: not part of study.<br>Other: Pin placement at first evaluation:<br>57/64 pins (89.15%) were placed inside the<br>safe area.<br>12 month evaluation: 75% of all pins were<br>safely placed. | "The majority of 57 pins were placed in the<br>safe area within 6 min after one single<br>training session. This reproduces the<br>Australian data and supports the theory<br>that adequately educated and skilled<br>physicians should be able to handle the<br>device properly. The data from the re-<br>evaluation suggest that repeating the<br>training session with the device improves<br>performance." |

| Table C.6. | Studies testing | abdominal | clamps with | simulation | models |
|------------|-----------------|-----------|-------------|------------|--------|
|            | oluaico looling | abaomman  | olumps with | Simulation | models |

| Reference                              | Type of Tourniquet Tested, Purpose and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Author's Conclusions                                                                                                                                                                                                                                                                                  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mann-Salinas et al. 2013 <sup>29</sup> | Combat Ready Clamp (CRoC)<br>Determine whether CRoC user performance<br>to stop simulated bleeding varied by<br>casualty positioning surface (hard and flat,<br>soft and flat, or soft and curved) and assess<br>time to control bleeding and some indices of<br>device safety. Enrolled 6 experienced<br>medical researchers trained in using the<br>CRoC. Experiments were conducted on a<br>specially designed manikin to evaluate the<br>CRoC; simulated proximal right thigh<br>through-and-through high-velocity gunshot<br>wound to the right common femoral artery. | Ease of Use: Time to completion was<br>slowest on the litter (soft curved surface)<br>mean 65 seconds compared to soft flat 55<br>seconds, and hard flat 58 seconds. Time to<br>assemble CRoC averaged 33 seconds.<br>Occlusion: 100% hemorrhage control by all<br>users on all three surfaces.<br>Other: Estimated blood loss averaged 581<br>±148 ml.                                                                                                                               | "These findings indicate that training was<br>effective and that training of other users is<br>plausible, feasible, and practical within the<br>scope of the present evidence."                                                                                                                       |
| Koller and Balogh 2012 <sup>405</sup>  | Pelvic C-clamp<br>Examine training effect on ability to<br>assemble and correctly place the pelvis C-<br>clamp. Assembly was on an anatomic pelvic<br>model specifically developed for pelvic<br>trauma training. Each participant was<br>evaluated approximately 11 days after<br>training. 27 participants were trained and<br>evaluated. Nine participants had previous<br>experience in pelvic surgery.                                                                                                                                                                 | Ease of Use: Clamp assembly completed in<br>99.7 +/- 39.7 (range: 35–182) seconds,<br>application performed in 133.9 +/- 74 (range:<br>34–279) seconds. Total time to assemble<br>and apply was 228.6 +/- 97.7 (range: 82–<br>409) seconds. 14 participants were able to<br>position both pins of the clamp inside the<br>safe area (51.9%). 18.5% of pins were<br>placed in the dangerous area, 11.1% on<br>target, and 70.4% inside the safe area.<br>Occlusion: not part of study. | "The majority of pins were placed into the<br>safe zone on a training model within 4 min<br>after one training session. 18.5%<br>dangerous pin placement within 11 days<br>of the training requires careful<br>consideration (risk/benefit) in the context<br>of a critically injured dying patient." |

 Table C.6.
 Studies testing abdominal clamps with simulation models (continued)





